Skip to main content
Log in

Ecoacoustics: the Ecological Investigation and Interpretation of Environmental Sound

  • Short Communication
  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

The sounds produced by animals have been a topic of research into animal behaviour for a very long time. If acoustic signals are undoubtedly a vehicle for exchanging information between individuals, environmental sounds embed as well a significant level of data related to the ecology of populations, communities and landscapes. The consideration of environmental sounds for ecological investigations opens up a field of research that we define with the term ecoacoustics. In this paper, we draw the contours of ecoacoustics by detailing: the main theories, concepts and methods used in ecoacoustic research, and the numerous outcomes that can be expected from the ecological approach to sound. Ecoacoustics has several theoretical and practical challenges, but we firmly believe that this new approach to investigating ecological processes will generate abundant and exciting research programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Amézquita, A., Flechas, S. V., Lima, A. P., Gasser, H., & Hödl, W. (2011). Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs. Proceedings of the National Academy of Sciences, 108, 17058–17063.

    Article  Google Scholar 

  • Azzellino, A., Lanfredi, C., D’Amico, A., Pavan, G., Podestà, M., & Haun, J. (2011). Risk mapping for sensitive species to underwater anthropogenic sound emissions: model development and validation in two Mediterranean areas. Marine Pollution Bulletin, 63, 56–70.

    Article  CAS  PubMed  Google Scholar 

  • Barber, J. R., Crooks, K. R., & Fristrup, K. M. (2009). The costs of chronic noise exposure for terrestrial organisms. Trends in Ecology & Evolution, 25, 180–189.

    Article  Google Scholar 

  • Barber, J. R., Burdett, C., Reed, S., Warner, K., Formichella, C., Crooks, K., Theobald, D., & Fristrup, K. (2011). Anthropogenic noise exposure in protected natural areas: estimating the scale of ecological consequences. Landscape Ecology, 26, 1281–1295.

    Article  Google Scholar 

  • Bardeli, R., Wolff, D., Kurth, F., Koch, M., & Frommolt, K.-H. (2010). Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring. Pattern Recognition Letters, 31, 1524–1534.

    Article  Google Scholar 

  • Boncoraglio, G., & Saino, N. (2007). Habitat structure and the evolution of bird song: a meta-analysis of the evidence for the acoustic adaptation hypothesis. Functional Ecology, 21, 134–142.

    Article  Google Scholar 

  • Bormpoudakis, D., Sueur, J., & Pantis, J. (2013). Spatial heterogeneity of ambient sound at the habitat type level: ecological implications and applications. Landscape Ecology, 28, 495–506.

    Article  Google Scholar 

  • Botero, C., Boogert, N. J., Vehrencamp, S. L., & Lovette, I. J. (2009). Climatic patterns predict the elaboration of song displays in monckingbirds. Current Biology, 19, 1–5.

    Article  Google Scholar 

  • Both, C., & Grant, T. (2012). Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs. Biology Letters, 8, 714–716.

    Article  PubMed Central  PubMed  Google Scholar 

  • Briefer, E., Oiejuk, T. S., Rybak, F., & Aubin, T. (2010). Are bird song complexity and song sharing shaped by habitat structure? An information theory and statistical approach. Journal of Theoretical Biology, 262, 151–164.

    Article  PubMed  Google Scholar 

  • Brown, A. L., & Muhar, A. (2004). An approach to he acoustic design of outdoor space. Journal of Environmental Planning and Management, 47, 827–842.

    Article  Google Scholar 

  • Cato, D., McCauley, R., Rogers, T., & Noad, M. (2006). Passive acoustics for monitoring marine animals - progress and challenges. Proceedings of Acoustics, 2006, 453–460.

    Google Scholar 

  • Chase, J. M., & Myers, J. A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366, 2351–2363.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chek, A. A., Bogart, J. P., & Loughheed, S. C. (2003). Mating signal partitioning in multi-species assemblages: a null model test using frogs. Ecology Letters, 6, 235–247.

    Article  Google Scholar 

  • Ey, E., & Fischer, J. (2009). The “acoustic adaptation hypothesis” - a review of the evidence from birds, anurans and mammals. Bioacoustics, 19, 21–48.

    Article  Google Scholar 

  • Farina, A. (2014). Soundscape ecology: Principles, patterns, methods and applications. New York: Springer.

    Book  Google Scholar 

  • Farina, A., & Pieretti, N. (2014). Sonic environment and vegetation structure: a methodological approach for a soundscape analysis of a Mediterranean maqui. Ecological Informatics, 21, 120–132.

    Article  Google Scholar 

  • Farina, A., Lattanzi, E., Malavasi, R., Pieretti, B., & Piccioli, L. (2010). Avian soundscapes and cognitive landscapes: theory, application and ecological perspectives. Landscape Ecology, 26, 1257–1267.

    Article  Google Scholar 

  • Farina, A., Pieretti, N., & Piccioli, L. (2011). The soundscape methodology for long-term bird monitoring: a Mediterranean Europe case-study. Ecological Informatics, 6, 354–363.

    Article  Google Scholar 

  • Farina, A., James, P., Bobryk, C., Pieretti, N., Lattanzi, E., & McWilliam, J. (2014). Low cost (audio) recording (LCR) for advancing soundscape ecology towards the conservation of sonic complexity and biodiversity in natural and urban landscapes. Urban Ecosystems, 17, 923–944.

    Article  Google Scholar 

  • Figueira, L., Tella, J. L., Camargo, U. M., & Ferraz, G. (2015). Autonomous sound monitoring shows higher use of amazon old growth than secondary forest by parrots. Biological Conservation, 184, 27–35.

    Article  Google Scholar 

  • Fletcher, N. H. (2007). Animal bioacoustics. In T. D. Rossing (Ed.), Handbook of acoustics (pp. 785–804). New York: Springer.

    Chapter  Google Scholar 

  • Francis, C. D., Ortega, C. P., & Cruz, A. (2009). Noise pollution changes avian communities and species interactions. Current Biology, 19, 1415–1419.

    Article  CAS  PubMed  Google Scholar 

  • Furnas, B. J., & Callas, R. L. (2015). Using automated recorders and occupancy models to monitor common forest birds across a large geographic region. The Journal of Wildlife Management, 79, 325–337.

    Article  Google Scholar 

  • Gage, S. H., & Axel, A. C. (2014). Visualization of temporal change in soundscape power of a Michigan lake habitat over a 4-year period. Ecological Informatics, 21, 100–109.

    Article  Google Scholar 

  • Gasc, A., Sueur, J., Jiguet, F., Devictor, V., Grandcolas, P., Burrow, C., Depraetere, M., & Pavoine, S. (2013). Assessing biodiversity with sound: do acoustic diversity indices reflect phylogenetic and functional diversities of bird communities? Ecological Indicators, 25, 279–287.

    Article  Google Scholar 

  • Hampton, S. E., Strasser, C. A., Tewksbury, J. J., Gram, W. K., Budden, A. E., Batcheller, A. L., Duke, C. S., & Porter, J. H. (2013). Big data and the future of ecology. Frontiers in Ecology and the Environment, 11, 156–162.

    Article  Google Scholar 

  • Hoffmeyer, J. (2008). The semiotic niche. Journal of Medical Economics, 9, 5–30.

    Google Scholar 

  • Hubbell, S. P. (2011). The unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press.

    Google Scholar 

  • Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427.

    Article  Google Scholar 

  • Joo, W., Gage, S. H., & Kasten, E. P. (2011). Analysis and interpretation of variability in soundscapes along an urban–rural gradient. Landscape and Urban Planning, 103, 259–276.

    Article  Google Scholar 

  • Kasten, E. P., Gage, S. H., Fox, J., & Joo, W. (2012). The remote environmental assessment laboratory’s acoustic library: an archive for studying soundscape ecology. Ecological Informatics, 12, 50–67.

    Article  Google Scholar 

  • Kight, C. R., & Swaddle, J. P. (2011). How and why environmental noise impacts animals: an integrative, mechanistic review. Ecology Letters, 14, 1052–1061.

    Article  PubMed  Google Scholar 

  • Krause, B. (1987). Bioacoustics, habitat ambience in ecological balance. Whole Earth Review, 57, 14–18.

    Google Scholar 

  • Krause, B. (1993). The niche hypothesis. Soundscape Newsletter, 6, 6–10.

    Google Scholar 

  • Laiolo, P. (2010). The emerging significance of bioacoustics in animal species conservation. Biological Conservation, 7, 1635–1645.

    Article  Google Scholar 

  • Laiolo, P., & Tella, J. (2006). Landscape bioacoustics allow detection of the effects of habitat patchiness on population structure. Ecology, 87, 1203–1214.

    Article  PubMed  Google Scholar 

  • Laiolo, P., Vögeli, M., Serrano, D., & Tella, J. L. (2008). Song diversity predicts the viability of fragmented bird populations. PloS One, 3, e1822.

    Article  PubMed Central  PubMed  Google Scholar 

  • Llusia, D., Márquez, R., Beltrán, J. F., Benítez, M., & do Amaral, J. P. (2013). Calling behaviour under climate change: geographic and seasonal variation of calling temperatures in ectotherms. Global Change Biology, 19, 2655–2674.

    Article  PubMed  Google Scholar 

  • Lucas, T. C. D., Moorcroft, E. A., Freeman, R., Rowcliffe, J. M., & Jones, K. E. (2015). A generalised random encounter model for estimating animal density with remote sensor data. Methods in Ecology and Evolution, 6, 500–509.

    Article  Google Scholar 

  • Luther, D. (2009). The influence of the acoustic community on songs of birds in a Neotropical rain forest. Behavioral Ecology, 20, 864–871.

    Article  Google Scholar 

  • Malavasi, R., & Farina, A. (2013). Neighbours’ talk: interspecific choruses among songbirds. Bioacoustics, 22, 33–48.

    Article  Google Scholar 

  • Marques, T. A., Thomas, L., Martin, S. W., Mellinger, D. K., Ward, J. A., Moretti, D. J., Harris, D., & Tyack, P. L. (2012). Estimating animal population density using passive acoustics. Biological Reviews, 88, 287–309.

    Article  PubMed Central  PubMed  Google Scholar 

  • Marten, K., & Marler, P. (1977). Sound transmission and its significance for animal vocalization. Behavioral Ecology and Sociobiology, 2, 271–290.

    Article  Google Scholar 

  • Mazaris, A. D., Kallimanis, A. S., Chatzigianidis, G., Papadimitriou, K. & Pantis, J.D. (2009). Spatiotemporal analysis of an acoustic environment: interactions between landscape features and sounds. Landscape Ecology, 24, 817–831.

    Article  Google Scholar 

  • McGregor, P. K. (2005). Animal communcation networks. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Michener, W. K., & Jones, M. B. (2012). Ecoinformatics: supporting ecology as a data-intensive science. Trends in Ecology & Evolution, 27, 85–93.

    Article  Google Scholar 

  • Møller, A. P. (2010). When climate change affects where bird sing. Behavioral Ecology, 22, 212–217.

    Article  Google Scholar 

  • Morton, E. S. (1975). Ecological sources of selection on avian sounds. American Naturalist, 109, 17–34.

    Article  Google Scholar 

  • Pekin, B., Jung, J., Villanueva-Rivera, L., Pijanowski, B., & Ahumada, J. (2012). Modeling acoustic diversity using soundscape recordings and LIDAR-derived metrics of vertical forest structure in a Neotropical rainforest. Landscape Ecology, 27, 1513–1522.

    Article  Google Scholar 

  • Piercy, J. J. B., Codling, E. A., Hill, A. J., Smith, D. J., & Simpson, S. D. (2014). Habitat quality affects sound production and likely distance of detection on coral reefs. Marine Ecology Progress Series, 516, 35–47.

    Article  Google Scholar 

  • Pieretti, N., & Farina, A. (2013). Application of a recently introduced index for acoustic complexity to an avian soundscape with traffic noise. Journal of the Acoustical Society of America, 134, 891–900.

    Article  PubMed  Google Scholar 

  • Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B. L., Napoletano, B. M., Gage, S. H., & Pieretti, N. (2011). Soundscape ecology: the science of sound in the landscape. Bioscience, 61, 203–216.

    Article  Google Scholar 

  • Porteous, J. D., & Mastin, J. F. (1985). Soundscape. Journal of Architectual and Planning Reseaarch, 2, 169–186.

    Google Scholar 

  • Potamitis, I. (2014). Automatic classification of a taxon-rich community recorded in the wild. PloS One, 9, e96936.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rabin, L. A., McCowan, B., Hooper, S. L., & Owings, D. H. (2003). Anthropogenic noise and its effect on animal communication: an interface between comparative psychology and conservation biology. International Journal of Comparative Psychology, 16, 172–192.

    Google Scholar 

  • Risch, D., Castellote, M., Clark, C., Davis, G., Dugan, P., Hodge, L., Kumar, A., Lucke, K., Mellinger, D., Nieukirk, S., Popescu, C., Ramp, C., Read, A., Rice, A., Silva, M., Siebert, U., Stafford, K., Verdaat, H., & Van Parijs, S. (2014). Seasonal migrations of North Atlantic minke whales: novel insights from large-scale passive acoustic monitoring networks. Movement Ecology, 2, 24.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodriguez, A., Gasc, A., Pavoine, S., Grandcolas, P., Gaucher, P., & Sueur, J. (2014). Temporal and spatial variability of animal sound within a Neotropical forest. Ecological Informatics, 21, 133–143.

    Article  Google Scholar 

  • Ruppé, L., Clément, G., Herrel, A., Ballesta, L., Décamps, T., Kéver, L., & Parmentier, E. (2015). Environmental constraints drive the partitioning of the soundscape in fishes. Proceedings of the National Academy of Sciences, 12, 6092–6097.

    Article  Google Scholar 

  • Schafer, R. M. (1977). The soundscape: Our sonic environment and the tuning of the world. Destiny Books.

  • Schmidt, A., & Balakrishnan, R. (2014). Ecology of acoustic signalling and the problem of masking interference in insects. Journal of Comparative Physiology A, 201, 133–142.

    Article  Google Scholar 

  • Schmidt, A. K., Römer, H., & Riede, K. (2012). Spectral niche segregation and community organization in a tropical cricket assemblage. Behavioral Ecology, 24, 470–480.

    Article  Google Scholar 

  • Simpson, S. D., Meekan, M., Montgomery, J., McCauley, R., & Jeffs, A. (2005). Homeward sound. Science, 308, 221.

    Article  CAS  PubMed  Google Scholar 

  • Sinsch, U., Lumkemann, K., & Rosar, K. (2012). Acoustic niche partitioning in an anuran community inhabiting and Afromontane wetland (Butare, Rwanda). African Zoology, 47, 60–73.

    Article  Google Scholar 

  • Slabbekoorn, H., & Bouton, N. (2008). Soundscape orientation: a new field in need of sound investigation. Animal Behaviour, 76, e5–e8.

    Article  Google Scholar 

  • Smith, T. B., Harrigan, R. J., Kirschel, A. N. G., Buermann, W., Saatchi, S., Blumstein, D. T., de Kort, S. R., & Slabbekoorn, H. (2013). Predicting bird song from space. Evolutionary Applications, 6, 865–874.

    Article  PubMed Central  PubMed  Google Scholar 

  • Snaddon, J., Petrokofsky, G., Jepson, P., & Willis, K. J. (2013). Biodiversity technologies: tools as change agents. Biology Letters, 9, 20121029.

    Article  PubMed Central  PubMed  Google Scholar 

  • Stowell, D., & Plumbley, M. D. (2014). Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning. PeerJ, 2, e488.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sueur, J. (2002). Cicada acoustic communication: potential sound partitioning in a multispecies community from Mexico (Hemiptera: Cicadomorpha: Cicadidae). Biological Journal of the Linnean Society, 75, 379–394.

    Article  Google Scholar 

  • Sueur, J., Pavoine, S., Hamerlynck, O., & Duvail, S. (2008). Rapid acoustic survey for biodiversity appraisal. PloS One, 3, e4065.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sueur, J., Farina, A., Gasc, A., Pieretti, N., & Pavoine, S. (2014). Acoustic indices for biodiversity assessment and landscape investigation. Acta Acustica United with Acustica, 100, 772–781.

    Article  Google Scholar 

  • Tobias, J. A., Planqué, R., Cram, D. L., & Seddon, N. (2014). Species interactions and the structure of complex communication networks. Proceedings of the National Academy of Sciences, 111, 1020–1025.

    Article  CAS  Google Scholar 

  • Toledo, L. F., Tipp, C., & Marquez, R. (2015). The value of audiovisual archives. Science, 3447, 484.

    Article  Google Scholar 

  • Towsey, M., Parsons, S., & Sueur, J. (2014a). Ecology and acoustics at a large scale. Ecological Informatics, 21, 1–3.

    Article  Google Scholar 

  • Towsey, M., Wimmer, J., Williamson, I., & Roe, P. (2014b). The use of acoustic indices to determine avian species richness in audio-recordings of the environment. Ecological Informatics, 21, 110–119.

    Article  Google Scholar 

  • Towsey, M., Zhang, L., Cottman-Fields, M., Wimmer, J., Zhang, J., & Roe, P. (2014c). Visualization of long-duration acoustic recordings of the environment. Procedia Computer Science, 29, 703–712.

    Article  Google Scholar 

  • Truax, B. (1999). Handbook for acoustic ecology. Cambridge Street Publishing: CD-ROM Edition.

  • Tucker, D., Gage, S., Williamson, I., & Fuller, S. (2014). Linking ecological condition and the soundscape in fragmented Australian forests. Landscape Ecology, 29, 745–758.

    Article  Google Scholar 

  • van Opzeeland, I., Samaran, F., Stafford, K., Findlay, K., Gedamke, J., Harris, D., & Miller, B. S. (2013). Towards collective circum-antarctic passive acoustic monitoring: the southern ocean hydrophone network (SOHN). Polarforschung, 83, 47–61.

  • Wimmer, J., Towsey, M., Roe, P., & Williamson, I. (2013). Sampling environmental acoustic recording to determine bird species richness. Ecological Applications, 22, 1419–1428.

    Article  Google Scholar 

  • Zimmer, W. M. X. (2011). Passive acoustic monitoring of Cetaceans. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Acknowledgments

We warmly thank the colleagues who participated in organising the Paris meeting and to the development of the International Society of Ecoacoustics: Christopher Bobryk, Susan Fuller, Stuart Gage, Bernie Krause, Diego Llusia, Jamie McWilliam, David Monacchi, Gianni Pavan, Nadia Pieretti and Denise Risch. We also thank two anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Sueur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sueur, J., Farina, A. Ecoacoustics: the Ecological Investigation and Interpretation of Environmental Sound. Biosemiotics 8, 493–502 (2015). https://doi.org/10.1007/s12304-015-9248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-015-9248-x

Keywords

Navigation