, Volume 8, Issue 3, pp 493–502 | Cite as

Ecoacoustics: the Ecological Investigation and Interpretation of Environmental Sound

  • Jérôme SueurEmail author
  • Almo Farina
Short Communication


The sounds produced by animals have been a topic of research into animal behaviour for a very long time. If acoustic signals are undoubtedly a vehicle for exchanging information between individuals, environmental sounds embed as well a significant level of data related to the ecology of populations, communities and landscapes. The consideration of environmental sounds for ecological investigations opens up a field of research that we define with the term ecoacoustics. In this paper, we draw the contours of ecoacoustics by detailing: the main theories, concepts and methods used in ecoacoustic research, and the numerous outcomes that can be expected from the ecological approach to sound. Ecoacoustics has several theoretical and practical challenges, but we firmly believe that this new approach to investigating ecological processes will generate abundant and exciting research programs.


Ecoacoustics Sound Large-scale research Discipline framework 



We warmly thank the colleagues who participated in organising the Paris meeting and to the development of the International Society of Ecoacoustics: Christopher Bobryk, Susan Fuller, Stuart Gage, Bernie Krause, Diego Llusia, Jamie McWilliam, David Monacchi, Gianni Pavan, Nadia Pieretti and Denise Risch. We also thank two anonymous referees for their helpful comments.


  1. Amézquita, A., Flechas, S. V., Lima, A. P., Gasser, H., & Hödl, W. (2011). Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs. Proceedings of the National Academy of Sciences, 108, 17058–17063.CrossRefGoogle Scholar
  2. Azzellino, A., Lanfredi, C., D’Amico, A., Pavan, G., Podestà, M., & Haun, J. (2011). Risk mapping for sensitive species to underwater anthropogenic sound emissions: model development and validation in two Mediterranean areas. Marine Pollution Bulletin, 63, 56–70.CrossRefPubMedGoogle Scholar
  3. Barber, J. R., Crooks, K. R., & Fristrup, K. M. (2009). The costs of chronic noise exposure for terrestrial organisms. Trends in Ecology & Evolution, 25, 180–189.CrossRefGoogle Scholar
  4. Barber, J. R., Burdett, C., Reed, S., Warner, K., Formichella, C., Crooks, K., Theobald, D., & Fristrup, K. (2011). Anthropogenic noise exposure in protected natural areas: estimating the scale of ecological consequences. Landscape Ecology, 26, 1281–1295.CrossRefGoogle Scholar
  5. Bardeli, R., Wolff, D., Kurth, F., Koch, M., & Frommolt, K.-H. (2010). Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring. Pattern Recognition Letters, 31, 1524–1534.CrossRefGoogle Scholar
  6. Boncoraglio, G., & Saino, N. (2007). Habitat structure and the evolution of bird song: a meta-analysis of the evidence for the acoustic adaptation hypothesis. Functional Ecology, 21, 134–142.CrossRefGoogle Scholar
  7. Bormpoudakis, D., Sueur, J., & Pantis, J. (2013). Spatial heterogeneity of ambient sound at the habitat type level: ecological implications and applications. Landscape Ecology, 28, 495–506.CrossRefGoogle Scholar
  8. Botero, C., Boogert, N. J., Vehrencamp, S. L., & Lovette, I. J. (2009). Climatic patterns predict the elaboration of song displays in monckingbirds. Current Biology, 19, 1–5.CrossRefGoogle Scholar
  9. Both, C., & Grant, T. (2012). Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs. Biology Letters, 8, 714–716.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Briefer, E., Oiejuk, T. S., Rybak, F., & Aubin, T. (2010). Are bird song complexity and song sharing shaped by habitat structure? An information theory and statistical approach. Journal of Theoretical Biology, 262, 151–164.CrossRefPubMedGoogle Scholar
  11. Brown, A. L., & Muhar, A. (2004). An approach to he acoustic design of outdoor space. Journal of Environmental Planning and Management, 47, 827–842.CrossRefGoogle Scholar
  12. Cato, D., McCauley, R., Rogers, T., & Noad, M. (2006). Passive acoustics for monitoring marine animals - progress and challenges. Proceedings of Acoustics, 2006, 453–460.Google Scholar
  13. Chase, J. M., & Myers, J. A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366, 2351–2363.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Chek, A. A., Bogart, J. P., & Loughheed, S. C. (2003). Mating signal partitioning in multi-species assemblages: a null model test using frogs. Ecology Letters, 6, 235–247.CrossRefGoogle Scholar
  15. Ey, E., & Fischer, J. (2009). The “acoustic adaptation hypothesis” - a review of the evidence from birds, anurans and mammals. Bioacoustics, 19, 21–48.CrossRefGoogle Scholar
  16. Farina, A. (2014). Soundscape ecology: Principles, patterns, methods and applications. New York: Springer.CrossRefGoogle Scholar
  17. Farina, A., & Pieretti, N. (2014). Sonic environment and vegetation structure: a methodological approach for a soundscape analysis of a Mediterranean maqui. Ecological Informatics, 21, 120–132.CrossRefGoogle Scholar
  18. Farina, A., Lattanzi, E., Malavasi, R., Pieretti, B., & Piccioli, L. (2010). Avian soundscapes and cognitive landscapes: theory, application and ecological perspectives. Landscape Ecology, 26, 1257–1267.CrossRefGoogle Scholar
  19. Farina, A., Pieretti, N., & Piccioli, L. (2011). The soundscape methodology for long-term bird monitoring: a Mediterranean Europe case-study. Ecological Informatics, 6, 354–363.CrossRefGoogle Scholar
  20. Farina, A., James, P., Bobryk, C., Pieretti, N., Lattanzi, E., & McWilliam, J. (2014). Low cost (audio) recording (LCR) for advancing soundscape ecology towards the conservation of sonic complexity and biodiversity in natural and urban landscapes. Urban Ecosystems, 17, 923–944.CrossRefGoogle Scholar
  21. Figueira, L., Tella, J. L., Camargo, U. M., & Ferraz, G. (2015). Autonomous sound monitoring shows higher use of amazon old growth than secondary forest by parrots. Biological Conservation, 184, 27–35.CrossRefGoogle Scholar
  22. Fletcher, N. H. (2007). Animal bioacoustics. In T. D. Rossing (Ed.), Handbook of acoustics (pp. 785–804). New York: Springer.CrossRefGoogle Scholar
  23. Francis, C. D., Ortega, C. P., & Cruz, A. (2009). Noise pollution changes avian communities and species interactions. Current Biology, 19, 1415–1419.CrossRefPubMedGoogle Scholar
  24. Furnas, B. J., & Callas, R. L. (2015). Using automated recorders and occupancy models to monitor common forest birds across a large geographic region. The Journal of Wildlife Management, 79, 325–337.CrossRefGoogle Scholar
  25. Gage, S. H., & Axel, A. C. (2014). Visualization of temporal change in soundscape power of a Michigan lake habitat over a 4-year period. Ecological Informatics, 21, 100–109.CrossRefGoogle Scholar
  26. Gasc, A., Sueur, J., Jiguet, F., Devictor, V., Grandcolas, P., Burrow, C., Depraetere, M., & Pavoine, S. (2013). Assessing biodiversity with sound: do acoustic diversity indices reflect phylogenetic and functional diversities of bird communities? Ecological Indicators, 25, 279–287.CrossRefGoogle Scholar
  27. Hampton, S. E., Strasser, C. A., Tewksbury, J. J., Gram, W. K., Budden, A. E., Batcheller, A. L., Duke, C. S., & Porter, J. H. (2013). Big data and the future of ecology. Frontiers in Ecology and the Environment, 11, 156–162.CrossRefGoogle Scholar
  28. Hoffmeyer, J. (2008). The semiotic niche. Journal of Medical Economics, 9, 5–30.Google Scholar
  29. Hubbell, S. P. (2011). The unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press.Google Scholar
  30. Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427.CrossRefGoogle Scholar
  31. Joo, W., Gage, S. H., & Kasten, E. P. (2011). Analysis and interpretation of variability in soundscapes along an urban–rural gradient. Landscape and Urban Planning, 103, 259–276.CrossRefGoogle Scholar
  32. Kasten, E. P., Gage, S. H., Fox, J., & Joo, W. (2012). The remote environmental assessment laboratory’s acoustic library: an archive for studying soundscape ecology. Ecological Informatics, 12, 50–67.CrossRefGoogle Scholar
  33. Kight, C. R., & Swaddle, J. P. (2011). How and why environmental noise impacts animals: an integrative, mechanistic review. Ecology Letters, 14, 1052–1061.CrossRefPubMedGoogle Scholar
  34. Krause, B. (1987). Bioacoustics, habitat ambience in ecological balance. Whole Earth Review, 57, 14–18.Google Scholar
  35. Krause, B. (1993). The niche hypothesis. Soundscape Newsletter, 6, 6–10.Google Scholar
  36. Laiolo, P. (2010). The emerging significance of bioacoustics in animal species conservation. Biological Conservation, 7, 1635–1645.CrossRefGoogle Scholar
  37. Laiolo, P., & Tella, J. (2006). Landscape bioacoustics allow detection of the effects of habitat patchiness on population structure. Ecology, 87, 1203–1214.CrossRefPubMedGoogle Scholar
  38. Laiolo, P., Vögeli, M., Serrano, D., & Tella, J. L. (2008). Song diversity predicts the viability of fragmented bird populations. PloS One, 3, e1822.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Llusia, D., Márquez, R., Beltrán, J. F., Benítez, M., & do Amaral, J. P. (2013). Calling behaviour under climate change: geographic and seasonal variation of calling temperatures in ectotherms. Global Change Biology, 19, 2655–2674.CrossRefPubMedGoogle Scholar
  40. Lucas, T. C. D., Moorcroft, E. A., Freeman, R., Rowcliffe, J. M., & Jones, K. E. (2015). A generalised random encounter model for estimating animal density with remote sensor data. Methods in Ecology and Evolution, 6, 500–509.CrossRefGoogle Scholar
  41. Luther, D. (2009). The influence of the acoustic community on songs of birds in a Neotropical rain forest. Behavioral Ecology, 20, 864–871.CrossRefGoogle Scholar
  42. Malavasi, R., & Farina, A. (2013). Neighbours’ talk: interspecific choruses among songbirds. Bioacoustics, 22, 33–48.CrossRefGoogle Scholar
  43. Marques, T. A., Thomas, L., Martin, S. W., Mellinger, D. K., Ward, J. A., Moretti, D. J., Harris, D., & Tyack, P. L. (2012). Estimating animal population density using passive acoustics. Biological Reviews, 88, 287–309.PubMedCentralCrossRefPubMedGoogle Scholar
  44. Marten, K., & Marler, P. (1977). Sound transmission and its significance for animal vocalization. Behavioral Ecology and Sociobiology, 2, 271–290.CrossRefGoogle Scholar
  45. Mazaris, A. D., Kallimanis, A. S., Chatzigianidis, G., Papadimitriou, K. & Pantis, J.D. (2009). Spatiotemporal analysis of an acoustic environment: interactions between landscape features and sounds. Landscape Ecology, 24, 817–831.CrossRefGoogle Scholar
  46. McGregor, P. K. (2005). Animal communcation networks. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  47. Michener, W. K., & Jones, M. B. (2012). Ecoinformatics: supporting ecology as a data-intensive science. Trends in Ecology & Evolution, 27, 85–93.CrossRefGoogle Scholar
  48. Møller, A. P. (2010). When climate change affects where bird sing. Behavioral Ecology, 22, 212–217.CrossRefGoogle Scholar
  49. Morton, E. S. (1975). Ecological sources of selection on avian sounds. American Naturalist, 109, 17–34.CrossRefGoogle Scholar
  50. Pekin, B., Jung, J., Villanueva-Rivera, L., Pijanowski, B., & Ahumada, J. (2012). Modeling acoustic diversity using soundscape recordings and LIDAR-derived metrics of vertical forest structure in a Neotropical rainforest. Landscape Ecology, 27, 1513–1522.CrossRefGoogle Scholar
  51. Piercy, J. J. B., Codling, E. A., Hill, A. J., Smith, D. J., & Simpson, S. D. (2014). Habitat quality affects sound production and likely distance of detection on coral reefs. Marine Ecology Progress Series, 516, 35–47.CrossRefGoogle Scholar
  52. Pieretti, N., & Farina, A. (2013). Application of a recently introduced index for acoustic complexity to an avian soundscape with traffic noise. Journal of the Acoustical Society of America, 134, 891–900.CrossRefPubMedGoogle Scholar
  53. Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B. L., Napoletano, B. M., Gage, S. H., & Pieretti, N. (2011). Soundscape ecology: the science of sound in the landscape. Bioscience, 61, 203–216.CrossRefGoogle Scholar
  54. Porteous, J. D., & Mastin, J. F. (1985). Soundscape. Journal of Architectual and Planning Reseaarch, 2, 169–186.Google Scholar
  55. Potamitis, I. (2014). Automatic classification of a taxon-rich community recorded in the wild. PloS One, 9, e96936.PubMedCentralCrossRefPubMedGoogle Scholar
  56. Rabin, L. A., McCowan, B., Hooper, S. L., & Owings, D. H. (2003). Anthropogenic noise and its effect on animal communication: an interface between comparative psychology and conservation biology. International Journal of Comparative Psychology, 16, 172–192.Google Scholar
  57. Risch, D., Castellote, M., Clark, C., Davis, G., Dugan, P., Hodge, L., Kumar, A., Lucke, K., Mellinger, D., Nieukirk, S., Popescu, C., Ramp, C., Read, A., Rice, A., Silva, M., Siebert, U., Stafford, K., Verdaat, H., & Van Parijs, S. (2014). Seasonal migrations of North Atlantic minke whales: novel insights from large-scale passive acoustic monitoring networks. Movement Ecology, 2, 24.PubMedCentralCrossRefPubMedGoogle Scholar
  58. Rodriguez, A., Gasc, A., Pavoine, S., Grandcolas, P., Gaucher, P., & Sueur, J. (2014). Temporal and spatial variability of animal sound within a Neotropical forest. Ecological Informatics, 21, 133–143.CrossRefGoogle Scholar
  59. Ruppé, L., Clément, G., Herrel, A., Ballesta, L., Décamps, T., Kéver, L., & Parmentier, E. (2015). Environmental constraints drive the partitioning of the soundscape in fishes. Proceedings of the National Academy of Sciences, 12, 6092–6097.CrossRefGoogle Scholar
  60. Schafer, R. M. (1977). The soundscape: Our sonic environment and the tuning of the world. Destiny Books.Google Scholar
  61. Schmidt, A., & Balakrishnan, R. (2014). Ecology of acoustic signalling and the problem of masking interference in insects. Journal of Comparative Physiology A, 201, 133–142.CrossRefGoogle Scholar
  62. Schmidt, A. K., Römer, H., & Riede, K. (2012). Spectral niche segregation and community organization in a tropical cricket assemblage. Behavioral Ecology, 24, 470–480.CrossRefGoogle Scholar
  63. Simpson, S. D., Meekan, M., Montgomery, J., McCauley, R., & Jeffs, A. (2005). Homeward sound. Science, 308, 221.CrossRefPubMedGoogle Scholar
  64. Sinsch, U., Lumkemann, K., & Rosar, K. (2012). Acoustic niche partitioning in an anuran community inhabiting and Afromontane wetland (Butare, Rwanda). African Zoology, 47, 60–73.CrossRefGoogle Scholar
  65. Slabbekoorn, H., & Bouton, N. (2008). Soundscape orientation: a new field in need of sound investigation. Animal Behaviour, 76, e5–e8.CrossRefGoogle Scholar
  66. Smith, T. B., Harrigan, R. J., Kirschel, A. N. G., Buermann, W., Saatchi, S., Blumstein, D. T., de Kort, S. R., & Slabbekoorn, H. (2013). Predicting bird song from space. Evolutionary Applications, 6, 865–874.PubMedCentralCrossRefPubMedGoogle Scholar
  67. Snaddon, J., Petrokofsky, G., Jepson, P., & Willis, K. J. (2013). Biodiversity technologies: tools as change agents. Biology Letters, 9, 20121029.PubMedCentralCrossRefPubMedGoogle Scholar
  68. Stowell, D., & Plumbley, M. D. (2014). Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning. PeerJ, 2, e488.PubMedCentralCrossRefPubMedGoogle Scholar
  69. Sueur, J. (2002). Cicada acoustic communication: potential sound partitioning in a multispecies community from Mexico (Hemiptera: Cicadomorpha: Cicadidae). Biological Journal of the Linnean Society, 75, 379–394.CrossRefGoogle Scholar
  70. Sueur, J., Pavoine, S., Hamerlynck, O., & Duvail, S. (2008). Rapid acoustic survey for biodiversity appraisal. PloS One, 3, e4065.PubMedCentralCrossRefPubMedGoogle Scholar
  71. Sueur, J., Farina, A., Gasc, A., Pieretti, N., & Pavoine, S. (2014). Acoustic indices for biodiversity assessment and landscape investigation. Acta Acustica United with Acustica, 100, 772–781.CrossRefGoogle Scholar
  72. Tobias, J. A., Planqué, R., Cram, D. L., & Seddon, N. (2014). Species interactions and the structure of complex communication networks. Proceedings of the National Academy of Sciences, 111, 1020–1025.CrossRefGoogle Scholar
  73. Toledo, L. F., Tipp, C., & Marquez, R. (2015). The value of audiovisual archives. Science, 3447, 484.CrossRefGoogle Scholar
  74. Towsey, M., Parsons, S., & Sueur, J. (2014a). Ecology and acoustics at a large scale. Ecological Informatics, 21, 1–3.CrossRefGoogle Scholar
  75. Towsey, M., Wimmer, J., Williamson, I., & Roe, P. (2014b). The use of acoustic indices to determine avian species richness in audio-recordings of the environment. Ecological Informatics, 21, 110–119.CrossRefGoogle Scholar
  76. Towsey, M., Zhang, L., Cottman-Fields, M., Wimmer, J., Zhang, J., & Roe, P. (2014c). Visualization of long-duration acoustic recordings of the environment. Procedia Computer Science, 29, 703–712.CrossRefGoogle Scholar
  77. Truax, B. (1999). Handbook for acoustic ecology. Cambridge Street Publishing: CD-ROM Edition.Google Scholar
  78. Tucker, D., Gage, S., Williamson, I., & Fuller, S. (2014). Linking ecological condition and the soundscape in fragmented Australian forests. Landscape Ecology, 29, 745–758.CrossRefGoogle Scholar
  79. van Opzeeland, I., Samaran, F., Stafford, K., Findlay, K., Gedamke, J., Harris, D., & Miller, B. S. (2013). Towards collective circum-antarctic passive acoustic monitoring: the southern ocean hydrophone network (SOHN). Polarforschung, 83, 47–61.Google Scholar
  80. Wimmer, J., Towsey, M., Roe, P., & Williamson, I. (2013). Sampling environmental acoustic recording to determine bird species richness. Ecological Applications, 22, 1419–1428.CrossRefGoogle Scholar
  81. Zimmer, W. M. X. (2011). Passive acoustic monitoring of Cetaceans. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Muséum national d’Histoire naturelle, Institut de Systématique, Évolution, Biodiversité, ISYEB UMR 7205, CNRS-MNHN-UPMC-EPHESorbonne UniversitésParisFrance
  2. 2.Department of Basic Sciences and FoundationsUrbino UniversityUrbinoItaly

Personalised recommendations