Biosemiotics

, Volume 9, Issue 1, pp 7–29 | Cite as

The Great Chain of Semiosis. Investigating the Steps in the Evolution of Semiotic Competence

Original Paper

Abstract

Based on the conception of life and semiosis as co-extensive an attempt is given to classify cognitive and communicative potentials of species according to the plasticity and articulatory sophistication they exhibit. A clear distinction is drawn between semiosis and perception, where perception is seen as a high-level activity, an integrated product of a multitude of semiotic interactions inside or between bodies. Previous attempts at finding progressive trends in evolution that might justify a scaling of species from primitive to advanced levels have not met with much success, but when evolution is considered in the light of semiosis such a scaling immediately catches the eye. The main purpose of this paper is to suggest a scaling of this progression in semiotic freedom into a series of distinct steps. The elleven steps suggested are: 1) molecular recognition, 2) prokaryote-eukaryote transformation (privatization of the genome), 3) division of labor in multicellular organisms (endosemiosis), 4) from irritability to phenotypic plasticity, 5) sense perception, 6) behavioral choice, 7) active information gathering, 8) collaboration, deception, 9) learning and social intelligence, 10) sentience, 11) consciousness. In light of this, the paper finally discusses the conceptual framework for biosemiotic evolution. The evolution of biosemiotic capabilities does not take the form of an ongoing composition of simple signs (icons, indices, signals, etc.) into composite wholes. Rather, it takes the shape of the increasing subdivision and control of a primitive, holophrastic perception-action circuit already committed to “proto-propositions” (dicisigns) reliably guiding action already in the most primitive species.

Keywords

Biosemiotics Semiotic freedom Learning Social intelligence Consciousness Dicisigns Peirce 

References

  1. Ayre, D., & Grosberg, R. (1995). Aggression, habituation, and clonal coexistence in the sea anemone anthopleura elegantissima. The American Naturalist, 145, 427–453.CrossRefGoogle Scholar
  2. Bekoff, M., Allen, C. & Burghardt G. M. (eds.) (2002). The cognitive animal. empirical and theoretical perspectives on animal cognition, Cambridge, Mass.: MIT Press.Google Scholar
  3. Ben-Jacob, E., Becker, I., Shapiro, Y., & Levine, H. (2004). Bacterial linguistic communication and social intelligence. Trends in Microbiology, 12(8), 366–372.CrossRefPubMedGoogle Scholar
  4. Bshary, R., Wickler, W., & Fricke, H. (2002). Fish cognition: a primate’s eye view. Animal Cognition, 5, 1–13.CrossRefPubMedGoogle Scholar
  5. Burghardt, G. M., Ward, B., & Rosscoe, R. (1996). Problem of reptile play: enrichment and play behavior in a captive Nile soft-shelled turtle, Trionyx triunguis. Zoo Biology, 15, 223–238.CrossRefGoogle Scholar
  6. Darwin, C. (1880). The power of movement in plants. London: Murray.CrossRefGoogle Scholar
  7. Deacon, T. (2012). Incomplete nature: How Mind Emerged from Matter. New York, NY: W.W. Norton & Company.Google Scholar
  8. Diderot, D. (2011). Rameau’s nephew/D’Alembert’s dream, London: penguin (“D’alembert’s dream” originally written 1769)Google Scholar
  9. Dretske, F. I. (1995). Naturalizing the mind. Cambridge, MA: MIT Press.Google Scholar
  10. El-Hani, C. N., Queiroz, J., & Stjernfelt, F. (2010). Firefly femmes fatales: a case study in the semiotics of deception. Biosemiotics, 3, 33–55.CrossRefGoogle Scholar
  11. Esch, T., & Kristan, W. B. (2002). Decision-making in the leech nervous system. Integrative and Comparative Biology, 42, 716–724.CrossRefPubMedGoogle Scholar
  12. Evans, S., Bellairs, A. d’A., Charig, A. J., Dixon, D., Lillywhite, H. B., Groombridge, B. et al. (2008). Reptiles. The new encyclopedia of reptiles and amphibians. Oxford: Oxford University Press.Google Scholar
  13. Godfrey-Smith, P. (1998). Complexity and function of mind in nature. New York: Cambridge University Press.Google Scholar
  14. Gould, J. L. (2002). Can honey bees create cognitive maps? In M. Beckoff, C. Allen, and G. M. Burghardt (eds.), The cognitive animal. empirical and theoretical perspectives on animal cognition (pp. 41–45), Camb.Mass.: MIT Press.Google Scholar
  15. Grau, J. W. (2002). Learning and memory without a brain. In M. Bekoff, C. Allen, & G. M. Burghardt (Eds.), The cognitive animal. Empirical and theoretical perspectives on animal cognition (pp. 77–87). Cambridge, MA and London: MIT Press.Google Scholar
  16. Grutter, A. (1996). Parasite removal rates by the cleaner wrasse labroides dimidatus. Marine Ecology Pregress Series, 130, 61–70.CrossRefGoogle Scholar
  17. Hoffmeyer, J. (1992). Some semiotic aspects of the psycho-physical relation: the endo-exosemiotic boundary. In T. A. Sebeok, & J. Umiker-Sebeok (Eds.), Biosemiotics: The semiotic web 1991 (pp. 101–123). Berlin: Mouton de Gruyter.Google Scholar
  18. Hoffmeyer, J. (1996). Signs of meaning in the universe. Bloomington, IN: Indiana University Press.Google Scholar
  19. Hoffmeyer, J. (2006). Uexküllian planmässigkeit. Sign System Studies, 32, 73–97.Google Scholar
  20. Hoffmeyer, J. (2008). Biosemiotics. An examination into the signs of life and the life of signs. Scranton and London: University of Scranton Press.Google Scholar
  21. Hurford, J. (2007). The origin of meaning. Oxford: Oxford University Press.Google Scholar
  22. Hurley, S., & Nudds, M. (Eds.) (2006). Rational animals. Oxford: Oxford University Press.Google Scholar
  23. Jones, M., & Harper, J. L. (1987). The influence of neighbors on the growth of trees. i. the demography of buds in Betula pendula. Proceedings of the Royal Society of London Series B, 232, 1–18.CrossRefGoogle Scholar
  24. Kauffman, S., & Clayton, P. (2006). On emergence, agency, and organization. Biology and Philosophy, 21(4), 501–521.CrossRefGoogle Scholar
  25. Koopewitz, H., & Keenan, L. (1982). The primitive brains of Platyhelminthes. Trends in Neurosciences, 5, 77–79.CrossRefGoogle Scholar
  26. Kristan, W. B., & Shaw, B. K. (1987). Population coding and behavioral choice. Current Opinion in Neurobiology, 11, 826–831.Google Scholar
  27. Kull, K., Deacon, T., Emmeche, C., Hoffmeyer, J., & Stjernfelt, F. (2009). Theses on biosemiotics: the Saka convention. Biological Theory, 4, 167–173.CrossRefGoogle Scholar
  28. Kupfermann, I., & Weiss, K. R. (2001). Motor program selection in simple model systems. Current Opinion in Neurobiology, 11(6), 673–677.CrossRefPubMedGoogle Scholar
  29. Lovejoy, A. O. (1948 [1936]). The great chain of being. A study of the history of an idea. Cambridge, MA: Harvard University Press.Google Scholar
  30. Margulis, L. (1970). Origin of eukaryotic cells: Evidence and research implications for a theory of the origin and evolution of microbial, plant, and animal cells on the precambrian earth. New Haven/London: Yale University Press.Google Scholar
  31. Margulis, L. & Chapman, M. J. (2009). Kingdoms and domains. an illustrated guide to the life of phyla on earth, W. H. Freeman & Co.Google Scholar
  32. Margulis, L., & Fester, R. (Eds.) (1991). Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. Cambridge, MA: MIT Press.Google Scholar
  33. Millikan, R. (2006). Rational animals. In S. Hurley. & M. Nudds (eds.) Rational animals?(pp. 117–126). Oxford: Oxford University Press.Google Scholar
  34. Odling-Smee, L., & Braithwaite, V. (2003). The role of learning in fish orientation. Fish and Fisheries, 4, 235–246.CrossRefGoogle Scholar
  35. Prescott, T. (2007). Forced moves or good tricks in design space? Landmarks in the evolution of neural mechanisms for action selection. Adaptive Behavior, 15, 9–31.CrossRefGoogle Scholar
  36. Silvertown, J., & Gordon, D. (1989). A framework for plant behavior. Annual Review of Ecological Systems, 20, 349–366.CrossRefGoogle Scholar
  37. Sonea, S. (1992). Half of the living world was unable to communicate for about one billion years. In T. Sebeok, & J. Umiker-Sebeok (Eds.), Biosemiotics: The semiotic web 1991 (pp. 375–392). Berlin: Mouton de Gruyter.Google Scholar
  38. Spemann, H. (1938). Embryonic development and induction. The American Journal of the Medical Sciences, 196(5), 738.CrossRefGoogle Scholar
  39. Stjernfelt, F. (2014). Natural Propositions. The Actuality of Peirce’s Doctrine of Dicisigns. Boston: Docent Press.Google Scholar
  40. von Frisch, K. (1967). The dance language and orientation of bees. Cambridge Mass.: Harvard University Press.Google Scholar
  41. von Uexküll, J. (1928). Theoretische biologie. Berlin: J. Springer.CrossRefGoogle Scholar
  42. Waggoner, B. (2001). Eukaryotes and multicells: origin, Encyclopedia of Life Sciences, vol. London: Macmillan Publishers, 6, 585–593.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Biological InstituteUniversity of CopenhagenKøbenhavn KDenmark
  2. 2.Department of Arts and Cultural StudiesUniversity of CopenhagenCopenhagen SDenmark

Personalised recommendations