Skip to main content

Semiotic Scaffolding in Mathematics

Abstract

This paper investigates the notion of semiotic scaffolding in relation to mathematics by considering its influence on mathematical activities, and on the evolution of mathematics as a research field. We will do this by analyzing the role different representational forms play in mathematical cognition, and more broadly on mathematical activities. In the main part of the paper, we will present and analyze three different cases. For the first case, we investigate the semiotic scaffolding involved in pencil and paper multiplication. For the second case, we investigate how the development of new representational forms influenced the development of the theory of exponentiation. For the third case, we analyze the connection between the development of commutative diagrams and the development of both algebraic topology and category theory. Our main conclusions are that semiotic scaffolding indeed plays a role in both mathematical cognition and in the development of mathematics itself, but mathematical cognition cannot itself be reduced to the use of semiotic scaffolding.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Agre, P. (1997). Computation and human experience. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Benci, V., & Di Nasso, M. (2003). Numerosities of labelled sets: a new way of counting. Advances in Mathematics, 173(1), 50–67.

    Article  Google Scholar 

  • Berggren, J. L. (1986). Episodes in the mathematics of medieval Islam. New York: Springer.

    Google Scholar 

  • Bredon, G. E. (1993). Topology and geometry. New York: Springer-Verlag.

  • Brooks, R. A. (1990). Elephants don’t play chess. Robotics and Autonomous Systems, 6(1), 3–15.

    Article  Google Scholar 

  • Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(1), 139–159.

    Article  Google Scholar 

  • Cajori, F. (2007). A history of mathematical notations (Vol. I). New York: Cosimo Classics.

    Google Scholar 

  • Clark, A. (1998). Magic words: How language augments human computation. In P. Carruthers & J. Boucher (Eds.), Language and thought: Interdisciplinary themes (pp. 162–183). Cambridge: Cambridge University Press.

    Google Scholar 

  • Cooper, G. M., & Hausman, R. E. (2007). The cell. A molecular approach (4th ed.). Washington, D.C.: ASM Press.

    Google Scholar 

  • Eckmann, B. (1994). Mathematical Miniatures B (pp. 1–58). Online publication available at: http://www.indiana.edu/~jfdavis/notes/eckmann.pdf. Accessed 15 September 2014.

  • Frank, M. C., Fedorenko, E., & Gibson, E. (2008). Language as a cognitive technology: English-speakers match like Pirahã when you don’t let them count. In Cognitive science society: Proceedings of the 30th annual meeting of the cognitive science society (pp. 421–426). Red Hook: Curran Associates, Inc.

    Google Scholar 

  • Grant, E. (1974). A source book in medieval science. Cambridge: Harvard University Press.

    Google Scholar 

  • Hilbert, D. (1925). On the Ininite. In J. Heijenoort (Ed.), From Frege to Gödel: A source book in mathematical logic, 1879–1931 (pp. 369–392). Cambridge: Harvard University Press.

    Google Scholar 

  • Hoffmeyer, J. (2008). Semiotic scaffolding of living systems. In M. Barbieri (Ed.), Introduction to biosemiotics. The new biological synthesis (pp. 149–166). Dordrecht: Springer Science+Business Media B.V.

    Google Scholar 

  • Hutchins, E. (2001). Cognitive artifacts. In R. A. Wilson & F. C. Keil (Eds.), The MIT encyclopedia of the cognitive sciences (pp. 126–128). Cambridge: The MIT Press.

    Google Scholar 

  • Hutchins, E. (2005). Material anchors for conceptual blends. Journal of Pragmatics, 37(10), 1555–1577.

    Article  Google Scholar 

  • Johansen, M.W. (2010). Naturalism in the Philosophy of Mathematics, Copenhagen: Faculty of Science, University of Copenhagen, 2010. (Online publication available at: http://www.nbi.dk/natphil/prs/mwj/Dissertation-mwj2010.pdf).

  • Johansen, M. W. (2013). What’s in a diagram? On the classification of symbols, figures and diagrams. In M. Lorenzo (Ed.), Model-based reasoning in science and technology. Theoretical and cognitive issues (pp. 89–108). Heidelberg: Springer.

    Google Scholar 

  • Johansen, M. W., & Misfeldt, M. (2014). Når matematikere undersøger matematik- og hvilken betydning det har for undersøgende matematikundervisning. MONA, 2014(4), 42–59.

    Google Scholar 

  • Katz, V. J. (1998). A history of mathematics: An introduction (2nd ed.). Reading: Addison Wesley Publishing Company.

    Google Scholar 

  • Kirsh, D., & Maglio, P. (1994). On distinguishing epistemic from pragmatic action. Cognitive Science, 18(4), 513–550.

    Article  Google Scholar 

  • Kjeldsen, T. H., & Carter, J. (2012). The growth of mathematical knowledge—introduction of convex bodies. Studies in History and Philosophy of Science Part A, 43(2), 359–365. doi:10.1016/j.shpsa.2011.12.031.

    Article  Google Scholar 

  • Kline, M. (1990). Mathematical thought from ancient to modern times. New York: Oxford University Press.

    Google Scholar 

  • Krömer, R. (2007). Tool and object. New York: Birkhuser Verlag AG.

    Google Scholar 

  • Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. New York: Basic Books.

    Google Scholar 

  • Lützen, J. (2010). The algebra of geometric impossibility: descartes and montucla on the impossibility of the duplication of the cube and the trisection of the angle. Centaurus, 52(1), 4–37.

    Article  Google Scholar 

  • Mancosu, P. (2009). Measuring the size of infinite collections of natural numbers: was Cantor’s theory of infinite number inevitable? The Review of Symbolic Logic, 2(4), 612–646.

    Article  Google Scholar 

  • Menninger, K. (1992). Number words and number symbols: A cultural history of numbers. New York: Courier Dover Publications.

    Google Scholar 

  • Misfeldt, M. (2011). Computers as medium for mathematical writing. Semiotica, 2011(186), 239–258.

    Article  Google Scholar 

  • Norman, D. A. (1991). Cognitive artifacts. In J. M. Carroll (Ed.), Designing interaction: Psychology at the human-computer interface (pp. 17–38). Cambridge: Cambridge University Press.

    Google Scholar 

  • Norman, D. A. (1993). Things that make us smart. Reading: Addison-Wesley Publishing Company.

    Google Scholar 

  • Otte, M. (2006). Mathematical epistemology from a peircean semiotic point of view. Educational Studies in Mathematics, 61(1–2), 11–38.

    Article  Google Scholar 

  • Rashed, R. (1994). The development of Arabic mathematics: Between arithmetic and algebra. Boston studies in the philosophy of science (Vol. 156). Dordrecht/Boston: Kluwer.

    Book  Google Scholar 

  • Rheinberger, H.-J. (1997). Toward a history of epistemic things: synthesizing proteins in the test tube. Stanford: Stanford University Press.

    Google Scholar 

  • Steinbring, H. (2006). What makes a sign a mathematical sign? – An epistemological perspective on mathematical interaction. Educational Studies in Mathematics, 61(1–2), 133–162.

    Article  Google Scholar 

  • Stjernfelt, F. (2011). On operational and optimal iconicity in Peirce’s diagrammatology. Semiotica, 2011(186), 395–419.

    Article  Google Scholar 

  • Zhang, J., & Norman, D. (1994). Representations in distributed cognitive tasks. Cognitive Science, 18, 87–122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikkel Willum Johansen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Johansen, M.W., Misfeldt, M. Semiotic Scaffolding in Mathematics. Biosemiotics 8, 325–340 (2015). https://doi.org/10.1007/s12304-014-9228-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-014-9228-6

Keywords

  • Semiotic scaffoldings
  • Cognitive artifacts
  • Mathematics
  • Cognition
  • Development of mathematics