Agre, P. (1997). Computation and human experience. Cambridge: Cambridge University Press.
Book
Google Scholar
Benci, V., & Di Nasso, M. (2003). Numerosities of labelled sets: a new way of counting. Advances in Mathematics, 173(1), 50–67.
Article
Google Scholar
Berggren, J. L. (1986). Episodes in the mathematics of medieval Islam. New York: Springer.
Google Scholar
Bredon, G. E. (1993). Topology and geometry. New York: Springer-Verlag.
Brooks, R. A. (1990). Elephants don’t play chess. Robotics and Autonomous Systems, 6(1), 3–15.
Article
Google Scholar
Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(1), 139–159.
Article
Google Scholar
Cajori, F. (2007). A history of mathematical notations (Vol. I). New York: Cosimo Classics.
Google Scholar
Clark, A. (1998). Magic words: How language augments human computation. In P. Carruthers & J. Boucher (Eds.), Language and thought: Interdisciplinary themes (pp. 162–183). Cambridge: Cambridge University Press.
Google Scholar
Cooper, G. M., & Hausman, R. E. (2007). The cell. A molecular approach (4th ed.). Washington, D.C.: ASM Press.
Google Scholar
Eckmann, B. (1994). Mathematical Miniatures B (pp. 1–58). Online publication available at: http://www.indiana.edu/~jfdavis/notes/eckmann.pdf. Accessed 15 September 2014.
Frank, M. C., Fedorenko, E., & Gibson, E. (2008). Language as a cognitive technology: English-speakers match like Pirahã when you don’t let them count. In Cognitive science society: Proceedings of the 30th annual meeting of the cognitive science society (pp. 421–426). Red Hook: Curran Associates, Inc.
Google Scholar
Grant, E. (1974). A source book in medieval science. Cambridge: Harvard University Press.
Google Scholar
Hilbert, D. (1925). On the Ininite. In J. Heijenoort (Ed.), From Frege to Gödel: A source book in mathematical logic, 1879–1931 (pp. 369–392). Cambridge: Harvard University Press.
Google Scholar
Hoffmeyer, J. (2008). Semiotic scaffolding of living systems. In M. Barbieri (Ed.), Introduction to biosemiotics. The new biological synthesis (pp. 149–166). Dordrecht: Springer Science+Business Media B.V.
Google Scholar
Hutchins, E. (2001). Cognitive artifacts. In R. A. Wilson & F. C. Keil (Eds.), The MIT encyclopedia of the cognitive sciences (pp. 126–128). Cambridge: The MIT Press.
Google Scholar
Hutchins, E. (2005). Material anchors for conceptual blends. Journal of Pragmatics, 37(10), 1555–1577.
Article
Google Scholar
Johansen, M.W. (2010). Naturalism in the Philosophy of Mathematics, Copenhagen: Faculty of Science, University of Copenhagen, 2010. (Online publication available at: http://www.nbi.dk/natphil/prs/mwj/Dissertation-mwj2010.pdf).
Johansen, M. W. (2013). What’s in a diagram? On the classification of symbols, figures and diagrams. In M. Lorenzo (Ed.), Model-based reasoning in science and technology. Theoretical and cognitive issues (pp. 89–108). Heidelberg: Springer.
Google Scholar
Johansen, M. W., & Misfeldt, M. (2014). Når matematikere undersøger matematik- og hvilken betydning det har for undersøgende matematikundervisning. MONA, 2014(4), 42–59.
Google Scholar
Katz, V. J. (1998). A history of mathematics: An introduction (2nd ed.). Reading: Addison Wesley Publishing Company.
Google Scholar
Kirsh, D., & Maglio, P. (1994). On distinguishing epistemic from pragmatic action. Cognitive Science, 18(4), 513–550.
Article
Google Scholar
Kjeldsen, T. H., & Carter, J. (2012). The growth of mathematical knowledge—introduction of convex bodies. Studies in History and Philosophy of Science Part A, 43(2), 359–365. doi:10.1016/j.shpsa.2011.12.031.
Article
Google Scholar
Kline, M. (1990). Mathematical thought from ancient to modern times. New York: Oxford University Press.
Google Scholar
Krömer, R. (2007). Tool and object. New York: Birkhuser Verlag AG.
Google Scholar
Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. New York: Basic Books.
Google Scholar
Lützen, J. (2010). The algebra of geometric impossibility: descartes and montucla on the impossibility of the duplication of the cube and the trisection of the angle. Centaurus, 52(1), 4–37.
Article
Google Scholar
Mancosu, P. (2009). Measuring the size of infinite collections of natural numbers: was Cantor’s theory of infinite number inevitable? The Review of Symbolic Logic, 2(4), 612–646.
Article
Google Scholar
Menninger, K. (1992). Number words and number symbols: A cultural history of numbers. New York: Courier Dover Publications.
Google Scholar
Misfeldt, M. (2011). Computers as medium for mathematical writing. Semiotica, 2011(186), 239–258.
Article
Google Scholar
Norman, D. A. (1991). Cognitive artifacts. In J. M. Carroll (Ed.), Designing interaction: Psychology at the human-computer interface (pp. 17–38). Cambridge: Cambridge University Press.
Google Scholar
Norman, D. A. (1993). Things that make us smart. Reading: Addison-Wesley Publishing Company.
Google Scholar
Otte, M. (2006). Mathematical epistemology from a peircean semiotic point of view. Educational Studies in Mathematics, 61(1–2), 11–38.
Article
Google Scholar
Rashed, R. (1994). The development of Arabic mathematics: Between arithmetic and algebra. Boston studies in the philosophy of science (Vol. 156). Dordrecht/Boston: Kluwer.
Book
Google Scholar
Rheinberger, H.-J. (1997). Toward a history of epistemic things: synthesizing proteins in the test tube. Stanford: Stanford University Press.
Google Scholar
Steinbring, H. (2006). What makes a sign a mathematical sign? – An epistemological perspective on mathematical interaction. Educational Studies in Mathematics, 61(1–2), 133–162.
Article
Google Scholar
Stjernfelt, F. (2011). On operational and optimal iconicity in Peirce’s diagrammatology. Semiotica, 2011(186), 395–419.
Article
Google Scholar
Zhang, J., & Norman, D. (1994). Representations in distributed cognitive tasks. Cognitive Science, 18, 87–122.
Article
Google Scholar