Skip to main content

Cephalopod Cognition in an Evolutionary Context: Implications for Ethology

Abstract

What is the distribution of cognitive ability within the animal kingdom? It would be egalitarian to assume that variation in intelligence is everywhere clinal, but examining trends among major phylogenetic groups, it becomes easy to distinguish high-performing ‘generalists’ – whose behavior exhibits domain-flexibility – from ‘specialists’ whose range of behavior is limited and ecologically specific. These generalists include mammals, birds, and, intriguingly, cephalopods. The apparent intelligence of coleoid cephalopods (squids, octopuses, and cuttlefish) is surprising – and philosophically relevant – because of our independent evolutionary lineages: the most recent common ancestor between vertebrates and cephalopods would have been a small wormlike organism, without any major organizational structure to its nervous system. By identifying the cognitive similarities between these organisms and vertebrates, we can begin to derive some general principles of intelligence as a biological phenomenon. Here, I discuss trends in cephalopod behavior and surrounding theory, and suggest their significance for our understanding of domain-general cognition and its evolution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aronson, R. B. (1991). Ecology, paleobiology, and evolutionary constraint in the octopus. Bulletin of Marine Science, 49, 245–255.

    Google Scholar 

  2. Ayala, F. J. (1988). Can ‘progress’ be defined as a biological concept? In M. Nitecki (Ed.), Evolutionary progress (pp. 75–96). Chicago: University of Chicago Press.

    Google Scholar 

  3. Barrett, H. C., & Kurzban, R. (2006). Modularity in cognition: framing the debate. Psychological Review, 113, 628–647.

    PubMed  Article  Google Scholar 

  4. Boal, J. G. (2006). Social recognition: a top down view of cephalopod behavior. Life & Environment, 56(2), 69–79.

    Google Scholar 

  5. Budelmann, B. U. (1995). The cephalopod nervous system: What evolution has made of the molluscan design. In O. Breidbach & W. Kutsch (Eds.), The nervous system of invertebrates: An evolutionary and comparative approach. Berlin: Birkhauser Verlag.

    Google Scholar 

  6. Burghardt, G. M. (1977). Learning processes in reptiles. In C. Gans & D. Tinkle (Eds.), Biology of the Reptilia: Ecology and behavior. New York: Academic.

    Google Scholar 

  7. Byrne, R. (1995). The thinking ape: Evolutionary origins of intelligence. Oxford: Oxford University Press.

    Book  Google Scholar 

  8. Campbell, C. B., & Hodos, W. (1991). The scala naturae revisited: evolutionary scales and anagenesis in comparative psychology. Journal of Comparative Psychology, 105(3), 211–221.

    CAS  PubMed  Article  Google Scholar 

  9. Emery, N. J. (2006). Cognitive ornithology: the evolution of avian intelligence. Philosophical Transactions of the Royal Society B, 361, 23–43.

    Article  Google Scholar 

  10. Emery, N. J., & Clayton, N. S. (2004). The mentality of crows: convergent evolution of intelligence in corvids and apes. Science, 306(5703), 1903–1907.

    CAS  PubMed  Article  Google Scholar 

  11. Fiorito, G., & Scotto, P. (2005). Observational learning in Octopus vulgaris. Science, 256(5056), 545–547.

    Article  Google Scholar 

  12. Finn, J. K., Tregenza, T., & Norman, M. D. (2009). Defensive tool use in a coconut-carrying octopus. Current Biology, 19(23), R1069–R1070.

    Google Scholar 

  13. Fitch, W. T., Huber, L., & Bugnyar, T. (2010). Social cognition and the evolution of language: constructive cognitive phylogenies. Neuron, 65(6), 795–814.

    CAS  PubMed  Article  Google Scholar 

  14. Galef, B. G. (1987). Comparative psychology is dead! Long live comparative psychology. Journal of Comparative Psychology, 101(3), 259–261.

    Article  Google Scholar 

  15. Gibson, K. R. (2002). Evolution of human intelligence: the roles of brain size and mental construction. Brain, Behavior and Evolution, 59, 10–20.

    PubMed  Article  Google Scholar 

  16. Gould, S. J. (1988). Trends as changes in variance: a new slant on progress and directionality in evolution. Journal of Paleontology, 62(2), 319–329.

    Google Scholar 

  17. Gould, J. L. (2003). Animal cognition. Current Biology, 14, 372–375.

    Article  Google Scholar 

  18. Grasso, F. W., & Basil, J. A. (2009). The evolution of flexible behavioral repertoires in cephalopod molluscs. Brain, Behavior and Evolution, 74, 231–245.

    PubMed  Article  Google Scholar 

  19. Hanlon, R. T., & Messenger, J. B. (1998). Cephalopod behavior. Cambridge: Cambridge University Press.

    Google Scholar 

  20. Hejnol, A., & Martindale, M. Q. (2008). Acoel development supports a simple planula-like urbilaterian. Philosophical Transactions of the Royal Society B, 363(1496), 1493–1501.

    Article  Google Scholar 

  21. Helfman, G., Collette, B. B., Facey, D. H., & Bowen, B. W. (2009). The diversity of fishes: Biology evolution and ecology. New York: Wiley Blackwell.

    Google Scholar 

  22. Hodos, W., & Campbell, C. B. (1969). Scala naturae: Why there is no theory in comparative psychology. Psychological Review, 76, 337–350.

    Article  Google Scholar 

  23. Humphrey, N. K. (1976). The social function of intellect. In P. P. G. Bateson & R. A. Hinde (Eds.), Growing points in ethology (pp. 303–317). Cambridge: Cambridge University Press.

    Google Scholar 

  24. Hvorecny, L. M., Grudowski, J. L., Blakeslee, C. J., Simmons, T. L., Roy, P. R., Brooks, J. A., et al. (2007). Octopuses (Octopus bimaculoides) and cuttlefishes (Sepia pharaonis, S. officinalis) can conditionally discriminate. Animal Cognition, 10(4), 449–459.

    PubMed  Article  Google Scholar 

  25. Jerison, H. J. (1973). Evolution of the brain and intelligence. New York: Academic.

  26. Jerison, H. J., & Barlow, H. B. (1985). Animal intelligence as encephalization (and discussion). Philosophical Transactions of the Royal Society of London B, 308(1135), 21–35.

    CAS  Article  Google Scholar 

  27. Knoll, A. H., & Carroll, S. B. (1999). Early animal evolution: emerging views from comparative biology and geology. Science, 284, 2129–2137.

    CAS  PubMed  Article  Google Scholar 

  28. Kuba, M., Meisel, D. V., Byrne, R. A., Griebel, U., & Mather, J. A. (2003). Looking at play in Octopus vulgaris. Berliner Paläontologische Abhandlungen, 3, 163–169.

    Google Scholar 

  29. MacLean, P. D. (1990). The triune brain in evolution: Role in paleocerebral functions. New York: Plenum Press.

    Google Scholar 

  30. Mather, J. A. (2008). To boldly go where no mollusc has gone before: personality, play, thinking and consciousness in cephalopods. American Malacological Bulletin, 24, 51–58.

    Article  Google Scholar 

  31. Mather, J. A. (2009). Home choice and modification by juvenile Octopus vulgaris: specialized intelligence and tool use? Journal of Zoology, 233(3), 359–368.

    Article  Google Scholar 

  32. Mather, J. A. (2011). Consciousness in cephalopods? Journal of Cosmology, 14.

  33. Mather, J. A., & Anderson, R. C. (1999). Exploration, play, and habituation in octopuses. Journal of Comparative Psychology, 113, 333–338.

    Article  Google Scholar 

  34. Packard, A. (1972). Cephalopods and fish: the limits of convergence. Biological Reviews, 47(2), 241–307.

    CAS  Article  Google Scholar 

  35. Ruse, M. (1997). Monad to man: The concept of progress in evolutionary biology. Cambridge: Harvard University Press.

    Google Scholar 

  36. Shettleworth, S. J. (1998). Cognition, evolution, and behavior. New York: Oxford University Press.

    Google Scholar 

  37. Suboski, M. D. (1992). Releaser-induced recognition learning by amphibians and reptiles. Animal Learning and Behavior, 20(1), 63–82.

    Article  Google Scholar 

  38. Vitti, J. (2010). The evolution and distribution of animal consciousness. Collections of the Harvard University Archives: Theses. Cambridge: Harvard University Press.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joseph J. Vitti.

Additional information

Special Issue “Origins of Mind” edited by Liz Stillwaggon Swan and Andrew M. Winters

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vitti, J.J. Cephalopod Cognition in an Evolutionary Context: Implications for Ethology. Biosemiotics 6, 393–401 (2013). https://doi.org/10.1007/s12304-013-9175-7

Download citation

Keywords

  • Cephalopods
  • Cognitive evolution
  • Ethology
  • Comparative psychology