, Volume 6, Issue 3, pp 421–435 | Cite as

The Origin of Cellular Life and Biosemiotics

Original Paper


Recent successes of systems biology clarified that biological functionality is multilevel. We point out that this fact makes it necessary to revise popular views about macromolecular functions and distinguish between local, physico-chemical and global, biological functions. Our analysis shows that physico-chemical functions are merely tools of biological functionality. This result sheds new light on the origin of cellular life, indicating that in evolutionary history, assignment of biological functions to cellular ingredients plays a crucial role. In this wider picture, even if aggregation of chance mutations of replicator molecules and spontaneously self-assembled proteins led to the formation of a system identical with a living cell in all physical respects but devoid of biological functions, it would remain an inanimate physical system, a pseudo-cell or a zombie-cell but not a viable cell. In the origin of life scenarios, a fundamental circularity arises, since if cells are the minimal units of life, it is apparent that assignments of cellular functions require the presence of cells and vice versa. Resolution of this dilemma requires distinguishing between physico-chemical and biological symbols as well as between physico-chemical and biological information. Our analysis of the concepts of symbol, rule and code suggests that they all rely implicitly on biological laws or principles. We show that the problem is how to establish physico-chemically arbitrary rules assigning biological functions without the presence of living organisms. We propose a solution to that problem with the help of a generalized action principle and biological harnessing of quantum uncertainties. By our proposal, biology is an autonomous science having its own fundamental principle. The biological principle ought not to be regarded as an emergent phenomenon. It can guide chemical evolution towards the biological one, progressively assigning greater complexity and functionality to macromolecules and systems of macromolecules at all levels of organization. This solution explains some perplexing facts and posits a new context for thinking about the problems of the origin of life and mind.


Molecular functions Cellular functions Systems biology Physical symbols Biological symbols Quantum vacuum Emergence Supervenience Mind 


  1. Albrecht-Buehler, G. (2009). ‘Cell intelligence’. Available at [15 July 2012].
  2. Barbieri, M. (2008). Life is semiosis. The biosemiotic view of nature. Cosmos and History: The Journal of Natural and Social Philosophy, 4(1–2), 29–52.
  3. Barbieri, M. (2012). The paradigms of biology. Biosemiotics, April 2012, 1–27.Google Scholar
  4. Bauer, E. (1967). Theoretical biology. Budapest: Akadémiai Kiadó. in Hungarian. 1967; in Russian, 1935, 1982, 1993, 2002.Google Scholar
  5. Beckner, M. (1969). Function and teleology. Journal of the History of Biology, 2, 151–164.CrossRefGoogle Scholar
  6. Ben-Jacob, E., Shapira, Y., & Tauber, A. I. (2006). Seeking the foundations of cognition in bacteria: from Schrödinger’s negative entropy to latent information. Physica A, 359, 495–524.CrossRefGoogle Scholar
  7. Berridge, M. J. (2012). Cell Signalling Biology, doi:10.1042/csb0001001.
  8. Boi, L. (2010). Méthodes mathématiques, processus biologiques et philosophie de la nature. Eikasia. Revista de Filosofía, VI(35), 267–297.Google Scholar
  9. Bouchard, T. J. (2004). Genetic influence on human psychological traits: a survey. Current Directions in Psychological Science, 13, 148–151.CrossRefGoogle Scholar
  10. Buller, D. J. (2002). Function and teleology. In Encycl. Life Sci. (p. 393). London: Macmillan.Google Scholar
  11. ‘code’, 2012, entry, Oxford English Dictionary.Google Scholar
  12. Cruzeiro-Hansson, L. (2001). How do proteins work? Proc. First European Workshop on Exo/Astro-Biology. Frascati 21–23 May 2001. ESA SP-496.Google Scholar
  13. Dar-Nimrod, I., & Heine, S. J. (2011). Genetic essentialism: on the deceptive determinism of DNA. Psychological Bulletin, 137(5), 800–818.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Davies, P. (1999). The fifth miracle. The search for the origin of life. London: Penguin.Google Scholar
  15. Grandpierre, A. (2007). Biological extension of the action principle: endpoint determination beyond the quantum level and the ultimate physical roots of consciousness. Neuroquantology, 5, 346–362.Google Scholar
  16. Grandpierre, A. (2008). Cosmic life forms. In J. Seckbach & M. Walsh (Eds.), From fossils to astrobiology (pp. 369–385). Berlin: Springer.CrossRefGoogle Scholar
  17. Grandpierre, A. (2012). “Genuine biological autonomy: How can the spooky finger of mind play on the physical keyboard of the brain?” Athens: ATINER’S Conference Paper Series, No: PHI2012-0197.
  18. Grandpierre, A., & Kafatos, M. (2012). Biological autonomy. Philosophy Study, 2(9), 631–649.Google Scholar
  19. Green, E. R. (2012). Entry: “Biology.” Encyclopædia Britannica. Encyclopædia Britannica Ultimate Reference Suite. Chicago: Encyclopædia Britannica.Google Scholar
  20. Harold, F. M. (2001). The way of the cell. Molecules, organisms and the order of life. Oxford: Oxford University Press.Google Scholar
  21. Hoffmeyer, J. (1998). Surfaces inside surfaces: on the origin of agency and life. Cybernetics and Human Knowing, 5(1), 33–42.Google Scholar
  22. Hoffmeyer, J. (1999). Order out of indeterminacy. Semiotica, 127, 321–343.Google Scholar
  23. Hoffmeyer, J. (2001). Life and reference. BioSystems, 60, 123–130.PubMedCrossRefGoogle Scholar
  24. Huang, K. (2007). Fundamental forces of nature. The story of gauge fields. Singapore: World Scientific.CrossRefGoogle Scholar
  25. Itani, M., Yamamoto, Y., Doi, Y., & Miyaishi, S. (2011). Quantitative analysis of DNA degradation in the dead body. Acta Medica Okayama, 65, 299–306.PubMedGoogle Scholar
  26. Kawade, Y. (1992). A molecular semiotic view of biology. Interferon and ‘homeokine’ as symbols. Rivista di Biologia–Biology Forum, 85(1), 71–78.Google Scholar
  27. Kawade, Y. (2009). On the nature of the subjectivity of living things. Biosemiotics, 2(2), 205–220.CrossRefGoogle Scholar
  28. Kawamura, K. (2012). Drawbacks of the ancient RNA-based life-like system under primitive earth conditions. Biochimie, 94(7), 1441–1450.PubMedCrossRefGoogle Scholar
  29. Kim, J. (1998). Mind in a physical world. Cambridge: The MIT Press.Google Scholar
  30. Mona, A. E.-H., Sahar, A. E.-D., Sohayla, M. A., Nermin, A. H., & Sobhy, E. H. (2008). The relationship between postmortem interval and DNA degradation in different tissues of drowned rats. Mansoura Journal Forensic Medicine & Clinical Toxicology, XVI, 45–61.
  31. Nicklas, J. A., Noreault-Conti, T., & Buel, E. (2012). Development of a real-time method to detect DNA degradation in forensic samples. Journal of Forensic Sciences, 57(2), 466–471.PubMedCrossRefGoogle Scholar
  32. Noble, D. (2008a). Claude Bernard, the first systems biologist, and the future of physiology. Experimental Physiology, 93(1), 16–26.PubMedCrossRefGoogle Scholar
  33. Noble, D. (2008b). Genes and causation. Philosophical Transactions of the Royal Society A, 366, 3001–3015.CrossRefGoogle Scholar
  34. Noble, D. (2010). Biophysics and systems biology. Review. Philosophical Transactions of the Royal Society A, 368, 1125–1139.CrossRefGoogle Scholar
  35. Pályi, G., Zucchi, C., & Caglioti, L. (Eds.). (2002). Fundamentals of life. Paris: Elsevier.Google Scholar
  36. Pattee, H. H. (1973). The physical basis and origin of hierarchical control. In H. H. Pattee (Ed.), Hierarchy theory: The challenge of complex systems (pp. 73–108). New York: Braziller.Google Scholar
  37. Pattee, H. H. (1969) Physical Conditions for Primitive Functional Hierarchies. In L. L. Whyte, A. G. Wilson & D. Wilson (Eds.), Hierarchical Structures (pp. 161–177) New York: American Elsevier.Google Scholar
  38. Pattee, H. H., & Kull, K. (2009). A biosemiotic conversation: between physics and semiotics. Sign Systems Studies, 37(1–2), 311–331.Google Scholar
  39. Polanyi, M. (1968). Life’s irreducible structure. Science, 160, 1308–1312.PubMedCrossRefGoogle Scholar
  40. Rosoff, P. (2012). M. 2012. The myth of genetic enhancement. Theoretical Medicine and Bioethics, 33, 163–178.PubMedCrossRefGoogle Scholar
  41. Shapiro, R. (1986). Origins: A Sceptic’s guide to the creation of life on earth (pp. 186–187). New York: Summit Books.Google Scholar
  42. Shapiro, J. A. (2009). Revisiting the central dogma in the 21st Century. Annals of the New York Academy of Sciences, 1178, 6–28.Google Scholar
  43. Shapiro, J. A. (2011). Evolution: A view from the 21st century. FTPress Science.Google Scholar
  44. Steinman, G., & Cole, M. (1967). Synthesis of biologically pertinent peptides under possible primordial conditions. Proceedings of the National Academy of Science, 58, 735.Google Scholar
  45. Swan, L. S., & Goldberg, L. J. (2010). Biosymbols: symbols in life and mind. Biosemiotics, 3, 17–31.CrossRefGoogle Scholar
  46. Tachibana, C., White, A., Johnson, N. A. (2010). Rediscovering biology. Proteins and Proteomics.
  47. Toepfer, G. (2012). Teleology and its constitutive role for biology as the science of organized systems in nature. In: Studies in History and Philosophy of Biological and Biomedical Sciences, 43(1), 113–119.Google Scholar
  48. Witzany, G. (2010). Biocommunication and natural genome editing. Berlin: Springer.CrossRefGoogle Scholar
  49. Zhang, L., Gurskaya, N. G., Merzlyak, E. M., Staroverov, D. B., Mudrik, N. N., Samarkina, O. N., et al. (2007). Method for real-time monitoring of protein degradation at the single cell level. BioTechniques, 42(4), 446–450.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Konkoly Observatory of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations