Von Neumann’s Theory of Self-Reproducing Automata: A Useful Framework for Biosemiotics?


As interpreted by Pattee, von Neumann’s Theory of Self-Reproducing Automata has proved to be a useful tool for understanding some of the difficulties and paradoxes of molecular biosemiotics. But is its utility limited to molecular systems or is it more generally applicable within biosemiotics? One way of answering that question is to look at the Theory as a model for one particular high-level biosemiotic activity, human language. If the model is not useful for language, then it certainly cannot be generally useful to biosemiotics. Beginning with the Universal Turing Machine and continuing with von Neumann’s Theory and Pattee’s interpretation, the properties of universality, programmability, underspecification, complementarity of description/construction, and open-ended evolutionary potential are shown to be usefully applicable to language, thus opening a new line of inquiry in biosemiotics.

This is a preview of subscription content, access via your institution.


  1. Barbieri, M. (2009). A short history of biosemiotics. Biosemiotics, 2, 221–245.

    Article  Google Scholar 

  2. Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge: MIT Press.

    Google Scholar 

  3. Evans, N., & Levinson, S. (2009). The myth of language universals: Language diversity and its importance for cognitive science. The Behavioral and Brain Sciences, 32, 429–492.

    PubMed  Article  Google Scholar 

  4. Glimm, J., Impagliazzo, J., Singer, I. M., eds. (1990). The legacy of John von Neumann. Proceedings of symposia in pure mathematics, vol. 50. American Mathematical Society

  5. Goldstine, H. H. (1972). The computer from Pascal to von Neumann. Princeton: Princeton University Press.

    Google Scholar 

  6. Herken, R. (Ed.). (1994). The Universal Turing Machine: A half-century survey. Vienna: Springer.

    Google Scholar 

  7. Hurford, J. (1990). Nativist and functional explanations in language acquisition. In I. M. Roca (Ed.), Logical issues in language acquisition (pp. 85–136). Dordrecht: Foris.

    Google Scholar 

  8. McMullin, B. (2000). John von Neumann and the evolutionary growth of complexity: Looking backward, looking forward. Artifical Life, 6, 347–361.

    Article  CAS  Google Scholar 

  9. Pattee, H. H. (1969). How does a molecule become a message? Developmental Biology Supplement, 3, 1–16.

    Google Scholar 

  10. Pattee, H. H. (1982). Cell psychology: An evolutionary approach to the symbol-matter problem. Cognition and Brain Theory, 4, 325–341.

    Google Scholar 

  11. Pattee, H. H. (2001). The physics of symbols: Bridging the epistemic cut. Biosystems, 60, 5–21.

    PubMed  Article  CAS  Google Scholar 

  12. Pattee, H. H. (2005). The physics and metaphysics of biosemiotics. Journal of Biosemiotics, 1, 281–301.

    Google Scholar 

  13. Pattee, H. H. (2007). The necessity of biosemiotics: Matter-symbol complementarity. In M. Barbieri (Ed.), Introduction to biosemiotics (pp. 115–132). Dordrecht: Springer.

    Google Scholar 

  14. Pattee, H. H. (2008). Physical and functional conditions for symbols, codes, and languages. Biosemiotics, 1, 147–168.

    Article  Google Scholar 

  15. Pattee, H. H. (2009). Response to Jon Umerez’s paper: “Where does Pattee’s ‘how does a molecule become a message?’ belong in the history of biosemiotics?”. Biosemiotics, 2, 291–302.

    Article  Google Scholar 

  16. Turing, A. M. (1936). On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 230–265.

    Article  Google Scholar 

  17. Umerez, J. (2009). Where does Pattee’s “how does a molecule become a message?” belong in the history of biosemiotics? Biosemiotics, 2, 269–290.

    Article  Google Scholar 

  18. Von Neumann, J. (1961). General and logical theory of automata. In A. H. Taub (Ed.), John von Neumann: Collected works, vol. V (pp. 288–326). Oxford: Pergamon.

    Google Scholar 

  19. Von Neumann, J. (1966). In A. W. Burks (Ed.), Theory of self-reproducing automata. Urbana: University of Illinois Press.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Dennis P. Waters.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Waters, D.P. Von Neumann’s Theory of Self-Reproducing Automata: A Useful Framework for Biosemiotics?. Biosemiotics 5, 5–15 (2012). https://doi.org/10.1007/s12304-011-9127-z

Download citation


  • John von Neumann
  • Howard Pattee
  • Self-reproducing automata
  • Universal Turing Machine