Skip to main content

The Viral Origins of Telomeres and Telomerases and their Important Role in Eukaryogenesis and Genome Maintenance

Abstract

Whereas telomeres protect terminal ends of linear chromosomes, telomerases identify natural chromosome ends, which differ from broken DNA and replicate telomeres. Although telomeres play a crucial role in the linear chromosome organization of eukaryotic cells, their molecular syntax most probably descended from an ancient retroviral competence. This indicates an early retroviral colonization of large double-stranded DNA viruses, which are putative ancestors of the eukaryotic nucleus. This contribution demonstrates an advantage of the biosemiotic approach towards our evolutionary understanding of telomeres, telomerases, other reverse transcriptases and mobile elements. Their role in genetic/genomic content organization and maintenance is no longer viewed as an object of randomly derived alterations (mutations) but as a highly sophisticated hierarchy of regulatory networks organized and coordinated by natural genome-editing competences of viruses.

This is a preview of subscription content, access via your institution.

References

  • Ast, G. (2005). The alternative genome. Scientific American, 292, 58–65.

    CAS  Article  Google Scholar 

  • Bapteste, E., Charlebois, R. L., MacLeod, D., & Brochier, C. (2005). The two tempos of nuclear pore complex evolution: highly adapting proteins in an ancient frozen structure. Genome Biology, 6, R85.

    PubMed  Google Scholar 

  • Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.

    PubMed  CAS  Google Scholar 

  • Batzer, M. A., & Deininger, D. L. (2002). ALU repeats and human genomic diversity. Nature Reviews Genetics, 3, 370–380.

    PubMed  CAS  Google Scholar 

  • Bell, P. J. L. (2001). Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus. Journal of Molecular Evolution, 53, 251–256.

    PubMed  CAS  Google Scholar 

  • Bell, P. J. L. (2006). Sex and the eukaryotic cell cycle is consistent with a viral ancestry for the eukaryotic nucleus. Journal of Theoretical Biology, 243(1), 54–63. doi:10.1016/j.jtbi.2006.05.015.

    PubMed  CAS  Google Scholar 

  • Bird, C. P., Stranger, B. E., & Dermitzakis, E. T. (2006). Functional variation and evolution of non-coding DNA. Current Opinion in Genetics & Development, 16, 559–564.

    CAS  Google Scholar 

  • Blasco, M. (2007). The epigenetic regulation of mammalian telomeres. Nature Reviews, 8, 299–309.

    PubMed  CAS  Google Scholar 

  • Boeke, J. D. (2003). The unusual phylogenetic distribution of retrotransposons: a hypothesis. Genome Research, 13, 1975–1983.

    PubMed  CAS  Google Scholar 

  • Brosius, J. (1999). RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene, 238, 115–134.

    PubMed  CAS  Google Scholar 

  • Brosius, J. (2003). The contribution of RNAs and retroposition to evolutionary novelties. Genetica, 118, 99–115.

    PubMed  CAS  Google Scholar 

  • Chaconas, G. (2005). Hairpin telomeres and genome plasticity in Borrelia: all mixed up in the end. Molecular Microbiology, 58, 625–635.

    PubMed  CAS  Google Scholar 

  • Coffin, J. M., Hughes, A. H., & Varmus, H. E. (1997). Retroviruses. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Cottingham, F. R., & Hoyt, M. A. (1997). Mitotic spindle positioning in saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. Journal of Cell Biology, 138, 1041–1053.

    PubMed  CAS  Google Scholar 

  • Couzin, J. (2002). Small RNAs make big splash. Science, 298, 2296–2297.

    PubMed  CAS  Google Scholar 

  • Cullen, B. R. (2006). Viruses and microRNAs. Nature Genetics, 38, S25–S30.

    PubMed  CAS  Google Scholar 

  • Curcio, M. J., & Belfort, M. (2007). The beginning of the end: links between ancient retroelements and modern telomerases. Proceedings of the National Academy of Sciences of the United States of America, 104, 9107–9108.

    PubMed  CAS  Google Scholar 

  • Darzacq, X., Jady, B. E., Verheggen, C., Kiss, A. M., Bertrand, E., & Kiss, T. (2002). Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO Journal, 21, 2746–2756.

    PubMed  CAS  Google Scholar 

  • Daubin, V., & Ochman, H. (2004). Start-up entities in the origin of new genes. Current Opinion in Genetics & Development, 14, 616–619.

    CAS  Google Scholar 

  • Doench, J. G., Christian, P., Petersen, C. P., & Sharp, P. A. (2003). siRNAs can function as miRNAs. Genes & Development, 17, 438–442.

    CAS  Google Scholar 

  • Du, S., & Traktman, P. (1996). Vaccinia virus DNA replication: two hundred base pairs of telomeric sequence confer optimal replication efficiency on minichromosome templates. Proceedings of the National Academy of Sciences of the United States of America, 93, 9693–9698.

    PubMed  CAS  Google Scholar 

  • Eickbush, T. (1999). Mobile introns: retrohoming by complete reverse splicing. Current Biology, 9, 11–14.

    Google Scholar 

  • Eickbush, T. H. (1997). Telomerase and retrotransposons: which came first. Science, 277, 911–912.

    PubMed  CAS  Google Scholar 

  • Eickbush, T. H., & Eickbush, D. G. (2007). Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics, 175, 477–485.

    PubMed  CAS  Google Scholar 

  • Eigen, M., & Winkler, R. (1975). Das spiel—naturgesetze steuern den zufall. München: Piper.

    Google Scholar 

  • Fajkus, J., Sykorova, E., & Leitch, A. R. (2005). Telomeres in evolution and evolution of telomeres. Chromosome Research, 13, 469–479.

    PubMed  CAS  Google Scholar 

  • Filipowicz, W. (2000). Imprinted expression of small nucleolar RNAs in brain: time for RNomics. Proceedings of the National Academy of Sciences of the United States of America, 97, 14035–14037.

    PubMed  CAS  Google Scholar 

  • Fire, A. (2005). Nucleic acid structure and intracellular immunity: some recent ideas from the world of RNAi. Quarterly Reviews of Biophysics, 38, 303–309.

    PubMed  CAS  Google Scholar 

  • Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.

    PubMed  CAS  Google Scholar 

  • Flavell, A. J. (1995). Retroelements, reverse transcriptase and evolution. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 110, 3–15.

    CAS  Google Scholar 

  • Forterre, P. (2001). Genomics and early cellular evolution. The origin of the DNA world. Comptes rendus de l’Académie des sciences. Série 3, Sciences de la vie, 324, 1067–1076.

    CAS  Google Scholar 

  • Forterre, P. (2002). The origin of DNA genomes and DNA replication proteins. Current Opinion in Microbiology, 5, 525–532.

    PubMed  CAS  Google Scholar 

  • Forterre, P. (2005). The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells. Biochimie, 87, 793–803.

    PubMed  CAS  Google Scholar 

  • Forterre, P. (2006a). The origin of viruses and their possible roles in major evolutionary transitions. Virus Research, 117, 5–16.

    PubMed  CAS  Google Scholar 

  • Forterre, P. (2006b). Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proceedings of the National Academy of Sciences of the United States of America, 103, 3669–3674.

    PubMed  CAS  Google Scholar 

  • Frost, L. S., Laplae, R., Summers, A. O., & Toussaint, A. (2005). Mobile genetic elements: the agents of open source evolution. Nature Reviews Microbiology, 3, 722–732.

    PubMed  CAS  Google Scholar 

  • Gabus, C., Ivanyi-Nagy, R., Depollier, J., Bucheton, A., Pelisson, A., & Darlix, J. L. (2006). Characterization of a nucleocapsid-like region and of two distinct primer tRNA binding sites in the endogenous retrovirus Gypsy. Nucleic Acids Research, 34, 5764–5777.

    PubMed  CAS  Google Scholar 

  • Gao, X., Havecker, E. R., Baranov, P. V., Atkins, J. F., & Voytas, D. F. (2003). Translational recoding signals between gag and pol in diverse LTR retrotransposons. RNA, 9, 1422–1430.

    PubMed  CAS  Google Scholar 

  • Gerdes, K. (2000). Toxin–antitoxin modules may regulate synthesis of macromolecules during nutritional stress. Journal of Bacteriology, 182, 561–572.

    PubMed  CAS  Google Scholar 

  • Gorinsek, B., Gubensek, F., & Kordis, D. (2004). Evolutionary genomics of chromovirus in eukaryotes. Molecular Biology and Evolution, 21, 781–798.

    PubMed  CAS  Google Scholar 

  • Grewal, S. I. S., & Elgin, S. C. R. (2007). Transcription and RNA interference in the formation of heterochromatin. Nature, 447, 399–406.

    PubMed  CAS  Google Scholar 

  • Haoudi, A., & Mason, J. M. (2000). Reverse transcriptase can stabilize or destabilize the genome. Genome, 43, 949–956.

    PubMed  CAS  Google Scholar 

  • Ijdo, J. W., Baldini, A., Ward, D. C., Reeders, S. T., & Wells, R. A. (1991). Origin of human chromosome 2: an ancestral telomere–telomere fusion. Proceedings of the National Academy of Sciences of the United States of America, 88, 9051–9055.

    PubMed  CAS  Google Scholar 

  • Jady, B. E., Bertrand, E., & Kiss, T. (2004). Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body-specific localization signal. The Journal of Cell Biology, 164, 647–652.

    PubMed  CAS  Google Scholar 

  • Kiss, A. M., Jady, B. E., Darzaq, X., Verheggen, C., Bertrand, E., & Kiss, T. (2002). A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. Nucleic Acids Research, 30, 4643–4649.

    PubMed  CAS  Google Scholar 

  • Koonin, E. V. (2006). Temporal order of evolution of DNA replication system inferred by comparison of cellular and viral DNA polymerases. Biology Direct, 1, 39. doi:10.1186/1745-6150-1-39.

    PubMed  Google Scholar 

  • Koonin, E. V., Senkevich, T. G., & Dolja, V. V. (2006). The ancient virus world and evolution of cells. Biology Direct, 1, 29.

    PubMed  Google Scholar 

  • Laun, P., Bruschi, C. V., Dickinson, J. R., Rinnerthaler, M., Heeren, G., Schwimbersky, R., et al. (2007). Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing. Nucleic Acids Research, 35(22), 7514–7526. doi:10.1093/nar/gkm919.

    PubMed  CAS  Google Scholar 

  • Leipe, D. D., Aravind, L., & Koonin, E. V. (1999). Did DNA replication evolve twice independently. Nucleic Acids Research, 27, 3389–3401.

    PubMed  CAS  Google Scholar 

  • Maita, N., Anzai, T., Aoyagi, H., Mizuno, H., & Fujiwara, H. (2004). Crystal structure of the endonuclease domain encoded by the telomere-specific long interspersed nuclear element, TRAS1. Journal of Biological Chemistry, 279, 41067–41076.

    PubMed  CAS  Google Scholar 

  • Maizels, A., & Weiner, A. M. (1993). The genomic tag hypothesis: modern viruses as molecular fossils of ancient strategies for genomic replication. In R. F. Gesteland, & J. F. Atkins (Eds.), The RNA world (pp. 577–602, 2nd ed.). Cold Spring Harbor NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Maizels, N., Weiner, A. M., Yue, D., & Shi, P. (1999). New evidence for the genomic tag hypothesis: archaeal CCA-adding enzymes and tRNA substrates. Biological Bulletin, 196, 331–334.

    PubMed  CAS  Google Scholar 

  • Makarova, K. S., Grishin, N. V., & Koonin, E. V. (2006). The HicAB cassette, a putative novel, RNA-targeting toxin–antitoxin system in archaea and bacteria. Bioinformatics, 22, 2581–2584.

    PubMed  CAS  Google Scholar 

  • Martin, W. (2005). Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Current Opinion in Microbiology, 8, 630–637.

    PubMed  CAS  Google Scholar 

  • Matera, A. G. (2006). Drosophila Cajal bodies: accessories not included. The Journal of Cell Biology, 172, 791–793.

    PubMed  CAS  Google Scholar 

  • Matera, A. G., Terns, R. M., & Terns, M. P. (2007). Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nature Reviews Molecular Cell Biology, 8, 209–220.

    PubMed  CAS  Google Scholar 

  • Mattick, J. S. (2001). Non-coding RNAs: the architects of eukaryotic complexity. EMBO Reports, 2, 986–991.

    PubMed  CAS  Google Scholar 

  • Mattick, J. S. (2006). The underworld of RNA. Nature Genetics, 38, 393.

    CAS  Google Scholar 

  • Mattick, J. S. (2007). A new paradigm for developmental biology. Journal of Experimental Biology, 210, 1526–1547.

    PubMed  Google Scholar 

  • Mesnard, J. M., & Lebeurier, G. (1991). How do viral reverse transcriptases recognize their RNA genome. FEBS Letters, 287, 1–4.

    PubMed  CAS  Google Scholar 

  • Nakamura, T. M., & Cech, T. R. (1998). Reversing time: origin of telomerase. Cell, 92, 587–590.

    PubMed  CAS  Google Scholar 

  • Nosek, J., Kosa, P., & Tomaska, L. (2006). On the origin of telomeres: a glimpse at the pre-telomerase world. Bioessays, 28, 182–190.

    PubMed  CAS  Google Scholar 

  • Pandey, D. P., & Gerdes, K. (2005). Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Research, 33, 966–976.

    PubMed  CAS  Google Scholar 

  • Platani, M., Goldberg, I., Lamond, A. I., & Swedlow, J. R. (2002). Cajal body dynamics and association with chromatin are ATP dependent. Nature Cell Biology, 4, 502–508.

    PubMed  CAS  Google Scholar 

  • Rao, A. L. N., Dreher, T. W., Marsh, L. E., & Hall, T. C. (1989). Telomeric function of the tRNA-like structure of brome mosaic virus RNA. Proceedings of the National Academy of Sciences of the United States of America, 86, 5335–5339.

    PubMed  CAS  Google Scholar 

  • Rashkova, S., Karam, S. E., Kellum, R., & Pardue, M. L. (2002). Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends. The Journal of Cell Biology, 159, 397–402.

    PubMed  CAS  Google Scholar 

  • Rodríguez-Alvarado, G., & Roossinck, M. J. (1997). Structural analysis of a necrogenic strain of cucumber mosaic cucumovirus satellite RNA in planta. Virology, 236, 155–166.

    PubMed  Google Scholar 

  • Rogozin, I. B., Sverdlov, A. V., Babenko, V. N., & Koonin, E. V. (2005). Analysis of evolution of exon–intron structure of eukaryotic genes. Briefings in Bioinformatics, 6, 118–134.

    PubMed  CAS  Google Scholar 

  • Ryan, F. P. (2004). Human endogenous retroviruses in health and disease: a symbiotic perspective. Journal of the Royal Society of Medicine, 97, 560–565.

    PubMed  Google Scholar 

  • Ryan, F. P. (2006). Genomic creativity and natural selection: a modern synthesis. Biological Journal of the Linnean Society, 88, 655–672.

    Google Scholar 

  • Ryan, F. P. (2007). Viruses as symbionts. Symbiosis, 44, 11–21.

    CAS  Google Scholar 

  • Savitsky, M., Kwon, D., Shpiz, S., Georgiev, P., Kalmykova, A., & Gvozdev, V. (2006). Telomere maintenance is under control of the RNAi-based mechanism in the Drosophila germline. Genes & Development, 20, 345–354.

    CAS  Google Scholar 

  • Sfakianos, J. N., & Hunter, E. (2003). M-PMV capsid transport is mediated by Env/Gag interactions at the pericentriolar recycling endosome. Traffic, 4, 671–680.

    PubMed  CAS  Google Scholar 

  • Shabalina, S. A., & Spiridonov, N. A. (2004). The mammalian transcriptome and the function of non-coding DNA sequences. Genome Biology, 5, 105e.

    Google Scholar 

  • Shapiro, J. A. (2002). Genome organization and reorganization in evolution. Annals of the New York Academy of Sciences, 981, 111–134.

    PubMed  CAS  Google Scholar 

  • Shapiro, J. A. (2006). Genome informatics: the role of DNA in cellular computations. Biological Theory, 1, 288–301.

    Google Scholar 

  • Shapiro, J. A., & Sternberg, R. (2005). Why repetitive DNA is essential to genome function. Biological Reviews, 80, 1–24.

    Google Scholar 

  • Slotkin, R. K., & Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nature Reviews Genetics, 8, 272–285.

    PubMed  CAS  Google Scholar 

  • Sternberg, R. (2002). On the roles of repetitive DNA elements in the context of a unified genomic–epigenetic system. Annals of the New York Academy of Sciences, 981, 154–188.

    Google Scholar 

  • Sternberg, R., & Shapiro, J. A. (2005). How repeated retroelements format genome function. Cytogenetic and Genome Research, 110, 108–116.

    Google Scholar 

  • St. Laurent, G., & Wahlestedt, C. (2007). Noncoding RNAs: couplers of analog and digital information in nervous system function. Trends in Neuroscience, 30(12), 612–621. doi:10.1016/j.tins.2007.10.002.

    CAS  Google Scholar 

  • Sugiyama, T., Cam, H., Verdel, A., Moazed, D., & Grewal, S. I. S. (2005). RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proceedings of the National Academy of Sciences of the United States of America, 102, 151–157.

    Google Scholar 

  • Takemura, M. (2001). Poxviruses and the origin of the eukaryotic nucleus. Journal of Molecular Evolution, 52, 419–425.

    PubMed  CAS  Google Scholar 

  • Tang, Y., Winkler, U., Fredd, E. O., Torrey, T. A., Kim, W., Li, H., et al. (1999). Cellular motor protein KIF-4 associates with retroviral gag. Journal of Virology, 73, 10508–10513.

    PubMed  CAS  Google Scholar 

  • Temin, H. M. (1985). Reverse transcription in the eukaryotic genome: retroviruses, pararetroviruses, retrotransposons and retrotranscripts. Molecular Biology and Evolution, 2, 455–468.

    PubMed  CAS  Google Scholar 

  • Tomlinson, R. L., Ziegler, T. D., Supakorndej, T., Terns, R. M., & Terns, M. P. (2006). Cell cycle-regulated trafficking of human telomerase to telomeres. Molecular Biology of the Cell, 17, 955–965.

    PubMed  CAS  Google Scholar 

  • Tourand, Y., Bankhead, T., Wilson, S. L., Putteet-Driver, A. D., Barbour, A. G., Byram, R., et al. (2006). Differential telomere processing by borrelia telomere resolvases in vitro but not in vivo. Journal of Bacteriology, 188, 7378–7386.

    PubMed  CAS  Google Scholar 

  • Tran, E., Brown, J., & Maxwell, E. S. (2004). Evolutionary origins of the RNA-guided nucleotide modification complexes: from the primitive translation apparatus. Trends in Biochemical Sciences, 29, 343–350.

    PubMed  CAS  Google Scholar 

  • Vale, R. (2003). The molecular motor toolbox for intracellular transport. Cell, 112, 467–480.

    PubMed  CAS  Google Scholar 

  • Van Lent, J. W. M., & Schmitt-Keichinger, C. (2006). Viral movement proteins induce tubule formation in plant and insect cells. In F. Baluska, D. Volmann, & P. Barlow (Eds.), Cell–cell channels (pp. 1–13). New York: Springer.

    Google Scholar 

  • Vaughn, M. W., & Martienssen, R. (2005). It’s a small RNA world, after all. Science, 309, 1525–1526.

    PubMed  CAS  Google Scholar 

  • Vetsigian, K., Woese, C., & Goldenfeld, N. (2006). Collective evolution and the genetic code. Proceedings of the National Academy of Sciences of the United States of America, 103, 10696–10701.

    PubMed  CAS  Google Scholar 

  • Villarreal, L. P. (2005). Viruses and the evolution of life. Washington: ASM.

    Google Scholar 

  • Villasante, A., Abad, J. P., & Mendez-Lago, M. (2007). Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome. Proceedings of the National Academy of Sciences of the United States of America, 104, 10542–10547.

    PubMed  CAS  Google Scholar 

  • Volff, J. N. (2006). Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays, 28, 913–922.

    PubMed  CAS  Google Scholar 

  • Weber, M. J. (2006). Mammalian small nucleolar RNAs are mobile genetic elements. PLoS Genetics, 2(12), e205 (December).

    PubMed  Google Scholar 

  • Weiss, R. A. (2006). The discovery of endogenous retroviruses. Retrovirology, 3, 67. doi:10.1186/1742-4690-3-67.

    PubMed  Google Scholar 

  • Witzany, G. (2000). Life: the communicative structure. Norderstedt: Libri Books on Demand.

    Google Scholar 

  • Witzany, G. (2006). Natural genome-editing competences of viruses. Acta Biotheoretica, 54, 235–253.

    PubMed  Google Scholar 

  • Witzany, G. (2007). The logos of the bios 2. Bio-communication. Helsinki: Umweb.

    Google Scholar 

  • Xiong, Y., & Eickbush, T. H. (1990). Origin and evolution of retroelements based upon their reverse transcriptase sequences. The EMBO Journal, 9, 3353–3362.

    PubMed  CAS  Google Scholar 

  • Yang, J., Malik, H. S., & Eickbush, T. H. (1999). Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proceedings of the National Academy of Sciences of the United States of America, 96, 7847–7852.

    PubMed  CAS  Google Scholar 

  • Zemann, A., Beckke, A., Kiefmann, M., Brosius, J., & Schmitz, J. (2006). Evolution of small nucleolar RNAs in nematodes. Nucleic Acids Research, 34, 2676–2685.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was first presented at the Cold Spring Harbor Laboratory Meeting on ‘Telomeres and Telomerases’, 3–6 May 2007. I would like to thank Cold Spring Harbor Laboratory for the invitation and participation support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guenther Witzany.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Witzany, G. The Viral Origins of Telomeres and Telomerases and their Important Role in Eukaryogenesis and Genome Maintenance. Biosemiotics 1, 191–206 (2008). https://doi.org/10.1007/s12304-008-9018-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-008-9018-0

Keywords

  • Telomeres
  • Telomerases
  • Eukaryotic nucleus
  • Persistent viruses