Skip to main content
Log in

Physical and Functional Conditions for Symbols, Codes, and Languages

  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

All sciences have epistemic assumptions, a language for expressing their theories or models, and symbols that reference observables that can be measured. In most sciences the language in which their models are expressed are not the focus of their attention, although the choice of language is often crucial for the model. On the contrary, biosemiotics, by definition, cannot escape focusing on the symbol–matter relationship. Symbol systems first controlled material construction at the origin of life. At this molecular level it is only in the context of open-ended evolvability that symbol–matter systems and their functions can be objectively defined. Symbols are energy-degenerate structures not determined by laws that act locally as special boundary conditions or constraints on law-based energy-dependent matter in living systems. While this partial description holds for all symbol systems, cultural languages are much too complex to be adequately described only at the molecular level. Genetic language and cultural languages have common basic requirements, but there are many significant differences in their structures and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, P. W. (1972). More is different. Science, 177, 393–396.

    Article  PubMed  CAS  Google Scholar 

  • Beadle, G. W. (1963). The language of the gene. In P. LeCorbellier (Ed.), The languages of science (pp. 57–84). New York: Basic.

    Google Scholar 

  • Bohr, N. (1933). Light and life. Nature, 131, 421–457.

    Article  Google Scholar 

  • Bradie, M. (1994). Epistemology from an evolutionary point of view. In E. Sober (Ed.), Conceptual issues in evolutionary biology (pp. 453–475, 2nd ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  • Churchland, P. M., & Churchland, P. S. (1998). On the contrary: Critical essays 1987–1997. Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  • Clark, A. (1997). Being there. Cambridge, MA: MIT Press.

    Google Scholar 

  • Conrad, M. (1984). Microscopic–macroscopic interface in biological information processing. BioSystems, 16, 345–363.

    Article  Google Scholar 

  • Conrad, M. (1990). The geometry of evolution. BioSystems, 24, 61–81.

    Article  PubMed  CAS  Google Scholar 

  • Crick, F. (1994). The astonishing hypothesis. New York: Macmillan.

    Google Scholar 

  • Delbrück, M. (1970). A physicist’s renewed look at biology: 20 years later. Science, 168, 1312–1315.

    Article  PubMed  Google Scholar 

  • Eddington, A. (1929). The nature of the physical world. Cambridge Univ. Press, p. 260.

  • Edelman, G. (1987). Neural Darwinism. The theory of neuronal group selection. New York: Basic.

    Google Scholar 

  • Eigen, M., & Schuster, P. (1979). The hypercycle. A principle of natural self-organization. Berlin: Springer.

    Google Scholar 

  • Frauenfelder H., & Wolynes, P. G. (1994). Biomolecules: where the physics of complexity and simplicity meet. Physics Today, February, 1994, pp. 58–64.

  • Gell-Mann, M. (1994). The quark and the jaguar p. 134. New York: Freeman.

    Google Scholar 

  • Goodwin, B. (1972). Biology and meaning. In C. H. Waddington (Ed.), Towards a Theoretical Biology 4 (pp. 259–275). Edinburgh Univ. Press.

  • Greenberg, J. H. (1963). Some universals of grammar with particular reference to the order of meaningful elements. In J. H. Greenberg (Ed.), Universals of language (pp. 73–113). London: MIT Press.

    Google Scholar 

  • Harnad, S. (1990). The symbol grounding problem. Physica D, 42, 335–346.

    Article  Google Scholar 

  • Hoffmeyer, J. (2007). Semiotic scaffolding of living systems. In M. Barbieri (Ed.), Introduction to biosemiotics (pp. 149–166). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Hoffmeyer, J., & Emmeche, C. (1991). Code duality and the semiotics of nature. In M. Anderson, & F. Merrell (Eds.), On semiotic modeling (pp. 117–166). New York: de Gruyter.

    Google Scholar 

  • Jakobson, R. (1970). Linguistics. In Main trends in research in the social and human sciences I. Mouton-UNESCO, pp. 437–440.

  • Kauffman, S. (1993). The origins of order. Oxford University Press.

  • Kendrew, J. C. (1968). How molecular biology got started. Book review of J. Cairns, G. Stent, and J. Watson, Phage and the origins of molecular biology, Cold Spring Harbor. In Scientific American, 216 (March), 141–144.

  • Lucretius, De Rerum Natura. On the nature of things, 1951 verse translation by R. E. Latham, Penguin revised edition, 1994

  • McKaughan, D. J. (2005). The influence of Niels Bohr on Max Delbrück: revisiting the hopes inspired by “Light and Life. Isis, 96, 507–529.

    Article  PubMed  Google Scholar 

  • Miles, R. N., & Hoy, R. R. (2006). The development of a biologically-inspired directional microphone for hearing aids. Audiology & Neurology, 11(2), 86–93.

    Article  CAS  Google Scholar 

  • Monod, J. (1971). Chance and necessity: An essay on the natural philosophy of modern biology. New York: Knopf.

    Google Scholar 

  • Pattee, H. H. (1961). On the origin of macromolecular sequences. Biophys J, 1, 683–710.

    Article  PubMed  CAS  Google Scholar 

  • Pattee. H. H. (1968). The physical basis of coding and reliability in biological evolution. In C. H. Waddington (Ed.), Towards a theoretical biology 1 (pp. 67–93). Edinburgh Univ. Press.

  • Pattee, H. H. (1969). How does a molecule become a message? Developmental Biology Supplement, 3, 1–16.

    Google Scholar 

  • Pattee, H. H. (1972). Laws, constraints, symbols, and languages. In C. H. Waddington (Ed.), Towards a theoretical biology 4 (pp. 248–258). Edinburgh Univ. Press.

  • Pattee, H. H. (1973). Hierarchy theory. The challenge of complex systems. New York: Braziller.

    Google Scholar 

  • Pattee, H. H. (1980). Clues from molecular symbol systems. Signed and spoken language: Biological constraints on linguistic form. In U. Bellugi, & M. Studdart-Kennedy (Eds.), Dahlem Konferenzen, Chemie, (pp. 261–274).

  • Pattee, H. H. (1995). Evolving self-reference: matter, symbols, and semantic closure. Communication and cognition-artificial intelligence, vol. 12, Nos. 1–2, pp. 9–27, Special Issue Self-reference in biological and cognitive systems, Luis Rocha (Ed.)

  • Pauli, W. (1994). The philosophical significance of the idea of complementarity. In C. P. Enz, & K. von Meyenn (Eds.), Writings on physics and philosophy (pp. 35–48). Berlin: Springer. (quotation on p. 41. First published under the title Die philosophische Bedeutung der Idee der Komplementarität, Experientia 6(Heft 2), pp. 72–75, 1950.

    Google Scholar 

  • Platt, J. R. (1961). Properties of large molecules that go beyond the properties of their chemical subgroups. Journal of Theoretical Biology, 1, 342–358.

    Article  PubMed  CAS  Google Scholar 

  • Polanyi, M. (1964). Personal knowledge, Torchbook Edition. NewYork: Harper & Row.

    Google Scholar 

  • Polanyi, M. (1968). Life's irreducible structure. Science, 160, 1308–1312.

    Article  PubMed  CAS  Google Scholar 

  • Raczaszek-Leonardi, J., & Kelso, S. (2007) Reconciling symbolic and dynamic aspects of language: Toward a dynamic psycholinguistics. New ideas in psychology doi:10.1016/j.newideapsych.2007.07.003

  • Rocha, L., & Hordijk, W. (2005). Artificial Life, 11(1–2), 189–214.

  • Rosen, R. (1969). Hierarchical organization in automata theoretic models of biological systems. In L. L. Whyte, A. G. Wilson, & D. Wilson (Eds.), Hierarchical structures (pp. 179–199). New York: Elsevier.

    Google Scholar 

  • Ryle, G. (1949). The concept of mind. Chicago: University of Chicago Press.

    Google Scholar 

  • Schuster, P. (1998). Evolution in an RNA world. In M. G. Ord, & L. A. Stocken (Eds.), Foundations of modern biochemistry, vol. IV: More landmarks in biochemistry (pp. 159–198). Stamford, CT: JAI.

    Chapter  Google Scholar 

  • Sereno, M. I. (1991). Four analogies between biological and cultural/linguistic evolution. Journal of Theoretical Biology, 151, 467–507.

    Article  PubMed  CAS  Google Scholar 

  • Simon, H. A. (1962). The architecture of complexity: hierarchic systems. Proceedings of the American Philosophical Society, 106, 467–482. Reprinted with revisions in The Sciences of the Artificial, 3rd Ed. MIT Press, 1996, pp. 183–216.

    Google Scholar 

  • Stent, G. S. (1968). That was the molecular biology that was. Science, 160, 390–395.

    Article  PubMed  CAS  Google Scholar 

  • von Neumann, J. (1951). General and logical theory of automata. In L. A. Jeffress (Ed.), Cerebral mechanisms of behavior, The Hixon symposium, vol. 5, No. 9 (pp. 316–318). New York: Wiley.

    Google Scholar 

  • von Neumann, J. (1955). Mathematical foundations of quantum mechanics. Princeton, NJ: Princeton Univ. Press.

    Google Scholar 

  • von Neumann, J. (1966). The theory of self-reproducing automata. Edited and completed by A. Burks, Urbana, IL: University of Illinois Press, Fifth Lecture, pp. 74–87.

  • Waddington, C. H. (1972). Epilogue. In C. H. Waddington (Ed.), Towards a theoretical biology 4 (pp. 283–289) Edinburgh Univ. Press

  • Wheeler, J. A. (1991). Information, physics, quantum: the search for links. In W. H. Zurek (Ed.),Complexity, entropy and the physics of information. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • Wigner, E. (1964). Events, laws, and invariance principles. Wigner’s Nobel Lecture, Stockholm, l0 Dec. 1963. Reprinted in Science 145, 995–999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Pattee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pattee, H.H. Physical and Functional Conditions for Symbols, Codes, and Languages. Biosemiotics 1, 147–168 (2008). https://doi.org/10.1007/s12304-008-9012-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-008-9012-6

Keywords

Navigation