Skip to main content
Log in

A new lithostratigraphic scheme of the Ordovician Jeongseon Formation of the Yongtan Group in the Taebaeksan Basin and sequence stratigraphic analysis with discussion on basin geometry

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

Lithostratigraphy of the Yongtan Group is newly established based on detailed sedimentologic and stratigraphic studies on recently exposed, less deformed, relatively continuous outcrops and comprehensive review of previous studies, mainly focusing on the Jeongseon Formation which occupies most of the group spatially and stratigraphically. The Yongtan Group is divided into the Jeongseon, Haengmae, and Hoedongri formations in ascending order, and all the units are assigned to the Ordovician. The Jeongseon Formation is divided into three members based on lithology. Eleven sedimentary facies are recognized in the Jeongseon Formation and organized into five facies associations (FAs), FA1 (tidal flat), FA2 (inner-ramp), FA3 (shoal), FA4 (mid-ramp), and FA5 (ramp-slope to outer-ramp). The formation is interpreted to have been deposited on a homoclinal ramp. The Yongtan Group is divided into two supersequences separated by type 1 sequence boundary and the lower and middle members of the Jeongseon Formation belong to Supersequence I and the Upper Member to Supersequence II which includes the Haengmae and Hoedongri formations. The relative sea-level curve inferred from sequence stratigraphic analysis suggests that the formation evolved through two depositional stages in accordance with second-order sea-level changes separated by the boundary between the Sauk and Tippecanoe sequence, and the curve is greatly similar to that of the Taebaek and Yeongwol groups. The southeastward thickening of FA3 and northwestward prevalence of shale-rich facies suggest that topographic highs and lows were present in the Taebaeksan Basin and a slope might have developed along the carbonate platform during the early stage of deposition. The correlation and lateral thickness variation of the facies associations additionally suggest that the basin was deeper toward the northwestern part of the Jeongseon area. The deepening is likely attributed to the weakening of the productivity of the carbonate factory during the early Ordovician.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, X.-L., Zhang, S.-Z., Huang, Q.-Y., Ding, X.-Q., and Zhang, S.-Y., 2016, Origin of dolomite in the Middle Ordovician peritidal platform carbonates in the northern Ordos Basin, western China. Petroleum Science, 13, 434–449.

    Article  CAS  Google Scholar 

  • Banerjee, S., Jeevankumar, S., Sanyal, P., and Bhattacharyya, S.K., 2006, Stable isotope ratios and nodular limestone of the Proterozoic Rhotas Limestone: Vindhyan Basin, India. Carbonates and Evaporites, 21, 133–143.

    Article  Google Scholar 

  • Bastianini, L., Caline, B., Hoareau, G., Bonnel, C., Martinez, M., Lézin, C., Baudin, F., Brasier, A., and Guy, L., 2017, Sedimentary characterization of the carbonate source rock of Upper Kimmeridgian Parnac Formation of the Aquitaine Basin (Quercy area). Bulletin de la Sociét Géologique de France, 188, 32. https://doi.org/10.1051/bsgf/2017197

    Article  Google Scholar 

  • Bayet-Goll, A. and Daraei, M., 2020, Palaeoecological, sedimentological and stratigraphical insights into microbially induced sedimentary structures of the lower Cambrian successions of Iran. Sedimentology, 67, 3199–3235.

    Article  Google Scholar 

  • Belghouthi, F., Zouari, A., and Zouari, H., 2019, Sedimentological analyses of the Upper Cretaceous and Lower Eocene carbonate successions in the Mateur-Beja area (NW of Tunisia): effects of tectonic regime on sedimentation. Arabian Journal of Geosciences, 12, 13638. https://doi.org/10.1007/s12517-019-4835-9

    Article  Google Scholar 

  • Bong, L.S., 1999, Diagenetic history of the Ordovician Chongson Limestone in the Chongson Area, Kangwon Province. M.Sc. Thesis, Chungnam National University, Daejeon, South Korea, 104 p. (in Korean with English abstract)

    Google Scholar 

  • Bong, L.S. and Chung, G.S., 2000, Diagenetic history of the Ordovician Chongson Limestone in the Chongson Area, Kangwon Province, Korea. Journal of Korean Earth Science Society, 21, 449–468. (in Korean with English abstract)

  • Bottjer, D.J., Arthur, M.A., Dean, W.E., Hattin, D.E., and Savrda, C.E., 1986, Rhythmic bedding produced in Cretaceous pelagic carbonate environments: sensitive recorders of climatic cycles. Paleoceanography, 1, 467–481.

    Article  ADS  Google Scholar 

  • Brandano, M. and Corda, L., 2002, Nutrients, sea level and tectonics: constrains for the facies architecture of a Miocene carbonate ramp in central Italy. Terra Nova, 14, 257–262.

    Article  ADS  Google Scholar 

  • Burchette, T.P. and Wright, V.P., 1992, Carbonate ramp depositional systems. Sedimentary Geology, 79, 3–57.

    Article  ADS  Google Scholar 

  • Calvet, F. and Turker, M.E., 1988, Outer ramp cycles in the Upper Muschelkalk of the Catalan Basin, northeast Spain. Sedimentary Geology, 57, 185–198.

    Article  ADS  Google Scholar 

  • Caron, V., Nelson, C.S., and Kamp, P.J.J., 2004, Transgressive surfaces of erosion as sequence boundary markers in cool-water shelf carbonates. Sedimentary Geology, 164, 179–189.

    Article  ADS  CAS  Google Scholar 

  • Catuneanu, O., 2002, Sequence stratigraphy of clastic systems: concepts, merits, and pitfalls. Journal of African Earth Sciences, 35, 1–43.

    Article  ADS  Google Scholar 

  • Catuneanu, O., 2020, Sequence stratigraphy in the context of the ‘modeling revolution’. Marine and Petroleum Geology, 116, 104309. https://doi.org/10.1016/j.marpetgeo.2020.104309

    Article  Google Scholar 

  • Catuneanu, O., Abreu, V., Bhattacharya, J.P., Blum, M.D., Dalrymple, R.W, Eriksson, P.G., Fielding, C.R., Fisher, WL., Galloway, WE., Gibling, M.R., Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, C.G.S.C., Macurda, B., Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier, H.W., Pratt, B.R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, M.E., and Winker, C., 2009, Towards the standardization of sequence stratigraphy. Earth-Science Reviews, 92, 1–33.

    Article  ADS  Google Scholar 

  • Chen, J., Chough, S.K., Han, Z., and Lee, J.-H., 2011, An extensive erosion surface of a strongly deformed limestone bed in the Gushan and Chaomidian formations (late Middle Cambrian to Furongian), Shandong Province, China: sequence-stratigraphic implications. Sedimentary Geology, 233, 129–149.

    Article  ADS  Google Scholar 

  • Cheong, C.H., 1969, Stratigraphy and paleontology of the Samcheog coalfield, Gangweondo, Korea (1). Journal of the Geological Society of Korea, 5, 13–56.

    Google Scholar 

  • Cheong, C.H., Lee, H.Y., Ko, I.S., and Lee, J.D., 1979, A study on stratigraphy and sedimentological environments of the lower Paleozoic sequences in South Korea (chiefly in Jeongseon area). Journal of National Academy of Sciences, Republic of Korea, Natural Science Series, 18, 123–159.

    Google Scholar 

  • Cho, M., Cheong, W, Ernst, WG., Kim, Y., and Yi, K., 2020, U-Pb detrital zircon ages of Cambrian-Ordovician sandstones from the Taebaeksan Basin, Korea: provenance variability in platform shelf sequences and paleogeographic implications. The Geological Society of America Bulletin, 133, 488–504. https://doi.org/10.1130/B35521.1

    Article  ADS  Google Scholar 

  • Cho, S.H., Lee, B.-S., Lee, D.-J., and Choh, S.-J., 2021, The Ordovician succession of the Taebaek Group (Korea) revisited: old conodont data, new perspectives, and implications. Geosciences Journal, 25, 417–431.

    Article  ADS  Google Scholar 

  • Choi, D.K., 1998, The Yongwol Group (Cambrian-Ordovician) redefined: a proposal for the stratigraphic nomenclature of the Choson Supergroup. Geosciences Journal, 2, 220–234.

    Article  ADS  Google Scholar 

  • Choi, D.K., 2014, Geology and Tectonic Evolution of the Korean Peninsula. Seoul National University Press, Seoul, South Korea, 277 p. (in Korean with English summary)

    Google Scholar 

  • Choi, D.K., 2018, Evolution of the Taebaeksan Basin, Korea: I, early Paleozoic sedimentation in an epeiric sea and break-up of the Sino-Korean Craton from Gondwana. Island Arc, 28, e12275. https://doi.org/10.1111/iar.12275

    Article  Google Scholar 

  • Choi, D.K. and Chough, S.K., 2005, The Cambrian-Ordovician stratigraphy of the Taebaeksan Basin, Korea: a review. Geosciences Journal, 9, 187–214. https://doi.org/10.1007/BF02910579

    Article  ADS  Google Scholar 

  • Choi, D.K. and Park, T.-Y.S., 2017, Recent advances of trilobite research in Korea: taxonomy, biostratigraphy, paleogeography, and ontogeny and phylogeny. Geosciences Journal, 21, 891–911.

    Article  ADS  CAS  Google Scholar 

  • Choi, S.-J., 1980, A study on biostratigraphy and micropaleontology of the Hoedongri and Haengmae formation in Pyeonganri area, Pyeongchang-Gun, Gangwon-Do. M.Sc. Thesis, Yonsei University, Seoul, South Korea, 70 p. (in Korean with English abstract)

    Google Scholar 

  • Chough, S.K., Kwon, S.T., Ree, J.H., and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth-Science Reviews, 52, 175–235.

    Article  ADS  Google Scholar 

  • Cooper, J.D. and Keller, M., 2001, Palaeokarst in the Ordovician of the southern Great Basin, USA: implications for sea-level history. Sedimentology, 48, 855–873.

    Article  ADS  CAS  Google Scholar 

  • Dalrymple, R.W, Narbonne, G.M., and Smith, L., 1985, Eolian action and the distribution of Cambrian shales in North America. Geology, 13, 607–610.

    Article  ADS  Google Scholar 

  • Demicco, R.V, 1983, Wavy and lenticular-bedded carbonate ribbon rocks of the upper Cambrian Conococheague Limestone, central Appalachians. Journal of Sedimentary Research, 53, 1121–1132. https://doi.org/10.1306/212F8328-2B24-11D7-8648000102C1865D

    Google Scholar 

  • Demicco, R.V and Hardie, L.A., 1994, Sedimentary structures and early diagenetic features of shallow marine carbonate deposits. SEPM Atlas Series No. 1, Society for Sedimentary Geology, Claremore, USA, 265 p. https://doi.org/10.2110/sepmatl.01

    Google Scholar 

  • Dickinson, WR. and Gehrels, G.E., 2009, Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288, 115–125.

    Article  ADS  CAS  Google Scholar 

  • Elrick, M., 1996, Sequence stratigraphy and platform evolution of Lower-Middle Devonian carbonates, eastern Great Basin. Geological Society of America Bulletin, 108, 392–416.

    Article  ADS  Google Scholar 

  • Emery, D. and Myers, K.J., 2009, Sequence Stratigraphy. Blackwell Publishing, Oxford, UK, 297 p.

    Google Scholar 

  • Enos, P. and Moore, C.H., 1983, Fore-reef slope environment. In: Scholle, P.A., Bebout, D.G., and Moore, C.H. (eds.), Carbonate Depositional Environments. AAPG Memoir, American Association of Petroleum Geologists, 33, p. 507–521. https://doi.org/10.1306/M33429C17

  • Faugères, J.C. and Stow, D.A.V., 1993, Bottom-current-controlled sedimentation: a synthesis of the contourite problem. Sedimentary Geology, 82, 287–297.

    Article  ADS  Google Scholar 

  • Flügel, E., 2004, Microfacies of Carbonate Rocks: Analysis, Interpretation and Application (2nd edition). Springer, Berlin, Germany, 984 p.

    Book  Google Scholar 

  • GICTR (Geological Investigation Corps of Taebaegsan Region), 1962, Atlas of Taebaegsan region and explanation. Geological Society of Korea, Seoul, South Korea, 89 p.

    Google Scholar 

  • Glumac, B. and Walker, K.R., 2000, Carbonate deposition and sequence stratigraphy of the terminal Cambrian Grand Cycles in the southern Appalachians, U.S.A. Journal of Sedimentary Research, 70, 952–963.

    Article  ADS  CAS  Google Scholar 

  • Grotzinger, J.P., 1986, Cyclicity and paleoenvironmental dynamics, Rocknest platform, Northwest Canada. Geological Society of America Bulletin, 97, 1208–1231.

    Article  ADS  Google Scholar 

  • Harland, T.L. and Pickerill, R.K., 1982, A review of Middle Ordovician sedimentation in the St. Lawrence Lowland, eastern Canada. Geological Journal, 17, 135–156.

    Article  ADS  Google Scholar 

  • Hesselbo, S.P., 2008, Sequence stratigraphy and inferred relative sea-level change from the onshore British Jurassic. Proceedings of the Geologists’ Association, 119, 19–34. https://doi.org/10.1016/S0016-7878(59)80069-9

    Article  Google Scholar 

  • Hisakoshi, S., 1943, Geology of Seizen (Jeongseon) district, Kogendo, Tyosen. Journal of Geological Society of Japan, 50, 269–277. (in Japanese)

    Google Scholar 

  • Hong, J.W, Chae, S., Jung, S-R., and Ree, J-H., 2011, Reexamination of Silurian Hoedong-ri Formation in Taebaeksan Basin: outcrop feature and microstructure. 2011 Fall Joint Conference of the Geological Science in Korea (Abstract), Jeju, South Korea, Oct. 26–29, p. 32.

  • Hong, S.K. and Lee, Y.I., 2007, Geological age of the Jeongseon Formation, Joseon Supergroup (lower Paleozoic): a perspective from carbon isotope stratigraphy. Geosciences Journal, 11, 1–9.

    Article  ADS  CAS  Google Scholar 

  • Jang, H. and Ryu, I.-C., 2021, A review of the stratigraphy of the Lower Paleozoic Joseon Supergroup. Journal of the Geological Society of Korea, 57, 495–521. (in Korean with English abstract) https://doi.org/10.14770/jgsk.2021.57.4.495

    Article  Google Scholar 

  • Jang, Y., 2018, Structural style of the Phanerozoic polyphase orogenic belt in the western Taebaeksan Zone, Okcheon Belt, Korea: insight from multidisciplinary analyses. Ph.D. Thesis, Yonsei University, Seoul, South Korea, 220 p.

    Google Scholar 

  • Jang, Y. and Cheong, H.J., 2019, Structural geometry of the Pyeongc-hang-Jeongseon area of the northwestern Taebaeksan Zone, Okcheon Belt. Economic and Environmental Geology, 52, 541–554. (in Korean with English abstract) https://doi.org/10.9719/EEG.2019.52.6.541

    Google Scholar 

  • Jang, Y., Kwon, S., Song, Y., Kim, S.W., Kwon, Y.K., and Yi, K., 2018, Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geo-chronologies. Journal of Asian Earth Sciences, 157, 198–217.

    Article  ADS  Google Scholar 

  • Jarochowska, E. and Kozlowski, W, 2014, Facies development and sequence stratigraphy of the Ludfordian (Upper Silurian) deposits in the Zbruch River Valley, Podolia, western Ukraine: local facies overprint on the δ13Ccarb record of a global stable carbon isotope excursion. Facies, 60, 347–369.

    Article  Google Scholar 

  • Jeong, U., 1995, Geological structures and deformational sequences of Jeongseon area, Kangweon-do, Korea. M.Sc. Thesis, Seoul University, Seoul, South Korea, 125 p. (in Korean with English abstract)

    Google Scholar 

  • Kang, S.J., 1996, Depositional environment and facies evolution of the Chongson Limestone in Kangwon Province. M.Sc. Thesis, Chungnam University, Daejeon, South Korea, 127 p. (in Korean with English abstract)

    Google Scholar 

  • Kee, W.-S., Kim, S.W., Kim, H., Hong, P., Kwon, C.W., Lee, H.-J., Cho, D.-L., Koh, H.J., Song, K.-Y., Byun, U.H., Jang, Y., and Lee, B.C., 2019, Geologic Map of Korea (Scale: 1:1,000,000). Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea. https://doi.org/10.22747/data.20220816.4826 [Accessed on 16 February 2024].

    Google Scholar 

  • Kendall, C.G.S.C. and Schlager, W., 1981, Carbonates and relative changes in sea level. Marine Geology, 44, 181–212.

    Article  ADS  Google Scholar 

  • Kervin, R.J. and Woods, A.D., 2012, Origin and evolution of palae-okarst within the Lower Ordovician (Ibexian) Goodwin Formation (Pogonip Group). Journal of Palaeogeography, 1, 57–69. https://doi.org/10.3724/SP.J.1261.2012.00006

    ADS  Google Scholar 

  • Kim, H.S., Choh, S.-J., Lee, J.-H., and Kim, S.J., 2019, Sediment grain size does matter: implications of spatiotemporal variations in detrital zircon provenance for early Paleozoic peri-Gondwana reconstructions. International Journal of Earth Sciences, 108, 1509–1526.

    Article  ADS  CAS  Google Scholar 

  • Kim, H.S., Hwang, M.-K., Ree, J.-H., and Yi, K., 2013, Tectonic linkage between the Korean Peninsula and mainland Asia in the Cambrian: insights from U-Pb dating of detrital zircon. Earth and Planetary Science Letters, 368, 204–218.

    Article  ADS  CAS  Google Scholar 

  • Kim, M.C., 2000, Biostratigraphy and Conodonts from the Jeongseon Limestone in the Jeongseon Area, KangweonDo, Korea. M.Sc. Thesis, Kongju National University, Gongju, South Korea, 65 p. (in Korean with English abstract)

    Google Scholar 

  • Kim, N.S., Choi, S.-J., Song, Y., Park, C., Chwae, U., and Yi, K., 2020, Distribution and stratigraphical significance of the Haengmae Formation in Pyeongchang and Jeongseon areas, South Korea. Economic and Environmental Geology, 53, 383–395. (in Korean with English abstract) https://doi.org/10.9719/EEG.2020.53.4383

    Google Scholar 

  • Kim, O.J., Lee, H.Y., Lee, D.S., and Yun, S., 1973, The stratigraphy and geologic structures of the Great Limestone Series in South Korea. Economic and Environmental Geology, 6, 81–114. (in Korean with English abstract)

    Google Scholar 

  • Kim, S.W., Park, S.-I., Jang, Y., Kwon, S., Kim, S.J., and Santosh, M., 2017, Tracking Paleozoic evolution of the South Korean Peninsula from detrital zircon records: implications for the tectonic history of East Asia. Gondwana Research, 50, 195–215.

    Article  ADS  CAS  Google Scholar 

  • Kim, Y. and Lee, Y.I., 2003, Characterization of Quartzites in the southern Korean Peninsula. Gondwana Research, 6, 729–742.

    Article  ADS  CAS  Google Scholar 

  • Knight, I., James, N.P., and Lane, T.E., 1991, The Ordovician St. George Unconformity, northern Appalachians: the relationship of plate convergence at the St. Lawrence Promontory to the Sauk/Tippecanoe sequence boundary. Geological Society of America Bulletin, 103, 1200–1225.

    Article  ADS  Google Scholar 

  • Kobayashi, T., 1953, Geology of South Korea with special reference to the limestone plateau of Kogendo. Journal of the Faculty of Science, Imperial University of Tokyo, Section II, 8, 145–293.

    Google Scholar 

  • Kobayashi, T., 1966, The Cambro-Ordovician formations and faunas of South Korea, Part X, Stratigraphy of the Chosen Group in Korea and South Manchuria and its relation to the Cambro-Ordovician formations of other areas, Section A, The Chosen Group of South Korea. Journal of the Faculty of Science, University of Tokyo, Section II, 16, 1–84.

    Google Scholar 

  • Kobayashi, T., Yosimura, I., Iwaya, Y., and Hukasawa, T., 1942, The Yokusen geosyncline in the Chosen period. Brief notes on the geologic history of the Yokusen orogenic zone. Proceedings of the Imperial Academy of Tokyo, 18, 579–584.

    Article  Google Scholar 

  • Kwon, Y.J. and Kwon, Y.K., 2020, Sequence stratigraphy in the Middle Ordovician carbonate successions (Yeongheung Formation), mid-east Korea: paleogeographic implications for a land-detached ramp-type platform. Journal of Asian Earth Sciences, 193, 104263. https://doi.org/10.1016/j.jseaes.2020.104263

    Article  Google Scholar 

  • Kwon, Y.K., 2012, Sequence stratigraphy of the Yeongweol Group (Cambrian-Ordovician), Taebaeksan Basin, Korea: paleogeographic implications. The Korean Society of Economic and Environmental Geology, 45, 317–334.

    Article  Google Scholar 

  • Kwon, Y.K., Chough, S.K., Choi, D.K., and Lee, D.J., 2006, Sequence stratigraphy of the Taebaek Group (Cambro-Ordovician), mideast Korea. Sedimentary Geology, 192, 19–55.

    Article  ADS  Google Scholar 

  • Lee, B.S., 2018, Recognition and significance of the Aurilobodus serratus Conodont Zone (Darriwilian) in lower Paleozoic sequence of the Jeongseon-Pyeongchang area, Korea. Geosciences Journal, 22, 683–696.

    Article  ADS  Google Scholar 

  • Lee, B.S., 2019, Upper Ordovician (Sandbian) conodonts from the Hoedongri Formation of western Jeongseon, Korea. Geosciences Journal, 23, 695–705.

    Article  ADS  CAS  Google Scholar 

  • Lee, B.S., 2020, Conodonts from the ‘Lower Limestone’ and Haengmae Formation in western Jeongseon, Korea and their implication for lithostratigraphic correlation. Geoscience Journal, 24, 113–120.

    Article  ADS  CAS  Google Scholar 

  • Lee, B.S., Cho, S.H., Choh, S.-J., and Wang, X., 2022, Confirmation of the Floian-Darriwilian (Lower to Middle Ordovician) hiatus in the Taebaek Group, Korea: integration of conodont biostratigraphy and sedimentology. Geosciences Journal, 26, 649–667.

    Article  ADS  CAS  Google Scholar 

  • Lee, C., Kwon, Y.K., Yeo, J.M., Kwon, Y.J., and Han, H.-C., 2020, U-Pb ages of detrital zircons in lower Palaeozoic quartzites of the Taebaeksan Basin, eastern Sino-Korean Block: sediment provenance response to relative sea-level changes. International Geology Review, 63, 2129–2145.

    Article  ADS  Google Scholar 

  • Lee, H.Y., 1976, Conodonts from the Maggol and Jeongseon Formation (Ordovician), Kangweon-Do, South Korea. Journal of the Geological Society of Korea, 12, 151–182.

    Google Scholar 

  • Lee, H.Y., 1980, Discovery of Silurian conodont fauna from South Korea. The Journal of the Geological Society of Korea, 16, 114–123.

    Google Scholar 

  • Lee, H.Y., 1982, Conodonts from the Hoedongri Formation (Silurian), western Jeongseon area, Kangwondo, South Korea. Journal of the National Academy of Sciences, Natural Science Series, 21, 43–131.

    Google Scholar 

  • Lee, H.Y., 1983, Conodont biostratigraphy of the Hoedongri Formation (Silurian) in the western Jeongseon Area, Kangweondo, South Korea. Institute of Natural Sciences, Yonsei University, 12, 77–99.

    Google Scholar 

  • Lee, H.Y., 1985, Conodonts from the Jeongseon Limestone in the Jeongseon area, Kangweondo and its biostratigraphy. Yonsei Nonchong, 21, 181–200.

    Google Scholar 

  • Lee, H.Y., 1987, Paleozoic erathem, Choson Supergroup. In: Lee, D.S. (ed.), Geology of Korea. The Geological Society of Korea, Kyohak-Sa, Seoul, South Korea, p. 49–156.

    Google Scholar 

  • Lee, Y.I., Choi, T., Lim, H.S., and Orihashi, Y., 2012, Detrital zircon U-Pb ages of the Jangsan Formation in the northeastern Okcheon belt, Korea and its implications for material source, provenance, and tectonic setting. Sedimentary Geology, 282, 256–267.

    Article  ADS  CAS  Google Scholar 

  • Li, W, Chen, J., Wang, L., Fang, X., and Zhang, Y., 2019, Slump sheets as a record of regional tectonics and paleogeographic changes in South China. Sedimentary Geology, 392, 105525.

    Article  Google Scholar 

  • Li, Z., Peng, S.T., Xu, C.W., Han, Y.X., and Zhai, M.G., 2009, U-Pb ages of the Paleozoic sandstone detrital zircons and their tectonic implications in the Taebaeksan basin, Korea. Acta Petrologica Sinica, 25, 182–192. (in Chinese with English abstract)

    Google Scholar 

  • Lim, N.J., Chung, G.S., Park, T.-Y.S., and Lee, K.S., 2015, Lithofacies and stable carbon isotope stratigraphy of the Cambrian Sesong Formation in the Taebaeksan Basin, Korea. Journal of Korean Earth Science Society, 36, 617–631.

    Article  Google Scholar 

  • Liu, B., Wang, Y.H., and Qian, X.L., 1997, Two Ordovician unconformities in North China: their origins and relationships to regional carbonate-reservoir characteristics. Carbonates Evaporites, 12, 177–184.

    Article  CAS  Google Scholar 

  • Ma, X.P., Han, Z.Z., and Wang, Y.H., 1998, The Tremadocian-early Arenigian (Early Ordovician) sequence stratigraphy and lithofacies paleogeography of North China. Chinese Journal of Geology, 33, 166–179. (in Chinese with English abstract)

    Google Scholar 

  • Markello, J.R. and Read, J.F., 1981, Carbonate ramp-to-deeper shale transitions of an Upper Cambrian intrashelf basins, Nolichucky Formation, southwest Virginia, Appalachians. Sedimentology, 28, 573–597.

    Article  ADS  Google Scholar 

  • Mateu-Vicens, G., Pomar, L., and Tropeano, M., 2008, Architectural complexity of a carbonate transgressive systems tract induced by basement physiography. Sedimentology, 55, 1815–1848.

    Article  ADS  Google Scholar 

  • Meng, X, Ge, M., and Tucker, M.E., 1997, Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114, 189–222.

    Article  ADS  Google Scholar 

  • Möller, N.K. and Kvingan, K., 1988, The genesis of nodular limestones in the Ordovician and Silurian of the Oslo Region (Norway). Sedimentology, 35, 405–420.

    Article  ADS  Google Scholar 

  • Mullins, H.T. and Cook, H.E., 1986, Carbonate apron models: alternatives to the submarine fan model for paleoenvironmental analysis and hydrocarbon exploration. Sedimentary Geology, 48, 37–79.

    Article  ADS  Google Scholar 

  • Overstreet, R.B., Oboh-Ikuenobe, F.E., and Gregg, J.M., 2003, Sequence stratigraphy and depositional facies of Lower Ordovician cyclic carbonate rocks, southern Missouri, U.S.A. Journal of Sedimentary Research, 73, 421–433.

    Article  ADS  Google Scholar 

  • Paik, I.S., 1987, Depositional environments of the Middle Ordovician Maggol Formation, southern part of the Baegunsan syncline area. Journal of the Geological Society of Korea, 23, 360–373.

    CAS  Google Scholar 

  • Park, C., Kim, N., Choi, S., and Song, Y., 2020, Mg-phengite in carbonate rock Ssngenetically formed from hydrothermal fluid: microtextural evidence and mineral chemistry. Minerals, 10, 1–14.

    Article  CAS  Google Scholar 

  • Park, Y.A. and Chang, J.H., 1985, Sedimentary petrology and paleo-oceanography of the Hoedongri Formation, Jeongseon-Kun, Kangweon-Do, Korea. Journal of the Korean Society of Oceanography, 20, 40–48.

    Google Scholar 

  • Pomar, L., 2001, Types of carbonate platforms: a genetic approach. Basin Research, 13, 313–334.

    Article  ADS  Google Scholar 

  • Pomar, L. and Kendall, C.G.S.C., 2008, Architecture of carbonate platforms: a response to hydrodynamics and evolving ecology. In: Lukasik, J.J. and Simo, J.A. (eds.), Controls on Carbonate Platform and Reef Development. SEPM Special Publication, Society for Sedimentary Geology, Claremore, USA, 89, p. 187–216. https://doi.org/10.2110/pec.08.89.0187

    Chapter  Google Scholar 

  • Pratt, B.R. and James, N.P., 1986, The St George Group (Lower Ordovician) of western Newfoundland: tidal flat island model for carbonate sedimentation in shallow epeiric seas. Sedimentology, 33, 313–343.

    Article  ADS  Google Scholar 

  • Pratt, B.R. and James, N.P., 2010, Peritidal carbonates. In: James, N.P. and Dalrymple, R.W. (eds.), Facies Models 4. Geotext, Geological Association of Canada, 6, p. 401–420.

  • Qing, H., Bosence, D.W.J., and Rose, E.P.F., 2008, Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates, Gibraltar, western Mediterranean. Sedimentology, 48, 153–163.

    Article  ADS  Google Scholar 

  • Ree, J-H. and Lee, S., 2012, Early Paleozoic carbonate rocks in the northwestern Jeongseon area: any stratigraphic meaning of the Jeongseon, Haengmae and Hoedongri Formations? 2012 Fall Joint Conference of the Geological Science in Korea (Abstract), Jeongseon, South Korea, Oct. 24–27, p. 89.

  • Rees, M.N., Brady, M.J., and Rowell, A.J., 1976, Depositional environments of the upper Cambrian Johns Wash Limestone (House Range, Utah). Journal of Sedimentary Research, 46, 38–47. https://doi.org/10.1306/212F6EB0-2B24-11D7-8648000102C1865D

    CAS  Google Scholar 

  • Ryu, I.C., 2002, Tectonic and stratigraphic significance of the Middle Ordovician carbonate breccias in the Ogcheon Belt, South Korea. The Island Arc, 11, 149–169.

    Article  CAS  Google Scholar 

  • Sarg, J.F., 1988, Carbonate sequence stratigraphy. In: Wilgus, C.K., Hastings, B.S., Posamentier, H., Van Wagoner, J., Ross, C.A., and Kendall, C.G.St.C. (eds.), Sea-level Changes: An Integrated Approach. SEPM Special Publication, Society for Sedimentary Geology, Claremore, USA, 42, p. 155–181. https://doi.org/10.2110/pec.88.01.0155

    Chapter  Google Scholar 

  • Schlager, W, 1993, Accommodation and supply-a dual control on stratigraphic sequences. Sedimentary Geology, 86, 111–136.

    Article  ADS  Google Scholar 

  • Schröder, S., Grotzinger, J.P., Amthor, J.E., and Matter, A., 2005, Carbonate deposition and hydrocarbon reservoir development at the Precambrian-Cambrian boundary: the Ara Group in South Oman. Sedimentary Geology, 180, 1–28.

    Article  ADS  Google Scholar 

  • Sena, C.M., John, C.M., Jourdan, A.-L., Vandeginste, V., and Manning, C., 2014, Dolomitization of Lower Cretaceous peritidal carbonates by modified seawater: constraints from clumped isotopic paleo-thermometry, elemental chemistry, and strontium isotopes. Journal of Sedimentary Research, 84, 552–566.

    Article  ADS  CAS  Google Scholar 

  • Seo, K.-S., Lee, H.-Y., and Ethington, R.L., 1994, Early Ordovician conodonts from the Dumugol Formation in the Baegunsan Syncline, eastern Yeongweol and Samcheog areas, Kangweon-do, Korea. Journal of Paleontology, 68, 599–616.

    Article  ADS  Google Scholar 

  • Son, C.M. and Cheong, J.K., 1976, On the geologic structure of Pyeongchang area. Journal of National Academy of Sciences, Natural Science Series, 16, 221–245.

    Google Scholar 

  • Song, D.N., 2001, Re-recognization of Huaiyuan Movement. Geology of Shandong, 17, 19–23. (in Chinese with English abstract)

    CAS  Google Scholar 

  • Song, Y., Park, C., Kim, N., Choi, S.-J., Chwae, U., Kwon, S., and Jang, Y., 2021, New occurrence of Haengmae Formation in Taebaeksan Basin. Economic and Environmental Geology, 54, 365–372.

    Article  Google Scholar 

  • Tinker, S.W., Ehrets, J.R., and Brondos, M.D., 1995, Multiple karst events related to stratigraphic cyclicity; San Andres Formation, Yates Field, West Texas. In: Budd, D.A., Saller, A.H., and Harris, P.M. (eds.), Unconformities and Porosity in Carbonate Strata. AAPG Memoir, American Association of Petroleum Geologists, 63, p. 213–237. https://doi.org/10.1306/M63592

  • Tucker, M.E. and Wright, V.P., 1990, Carbonate Sedimentology. Blackwell, Oxford, UK, 482 p. https://doi.org/10.1002/9781444314175

    Book  Google Scholar 

  • Van Wagoner, J.C., Posamentier, H.W., Mitchum, R.M., Vail, P.R., Sarg, J.F., Loutit, T.S., and Hardenbol, J., 1988, An overview of sequence stratigraphy and key definitions. In: Wilgus, C.K., Hastings, B.S., Posamentier, H., Van Wagoner, J., Ross, C.A., and Kendall, C.G.St.C. (eds.), Sea-level Changes: An Integrated Approach. SEPM Special Publication, Society for Sedimentary Geology, Claremore, USA, 42, p. 39–45.

    Chapter  Google Scholar 

  • Viana, A.R., Hercos, C.M., De Almeida, W.D., Magalhães, J.L.C., and Andrade, S.B., 2002, Evidence of bottom current influence on the Neogene to Quaternary sedimentation along the northern Campos Slope, SW Atlantic Margin. In: Stow, D.A.V., Pudsey, C.J., Howe, J.A., Faugères, J.C., and Viana, A.R. (eds.), Deep-water Contourite Systems: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics. Geological Society, London, Memoirs, 22, p. 249–259. https://doi.org/10.1144/GSL.MEM.2002.022.01.18

    Google Scholar 

  • Wang, B. and Al-Aasm, I., 2002, Karst-controlled diagenesis and reservoir development: Example from the Ordovician main reservoir carbonate rocks on the eastern margin of the Ordos basin, China. AAPG Bulletin, 86, 1639–1658. https://doi.org/10.1306/61EEDD28-173E-11D7-8645000102C1865D

    CAS  Google Scholar 

  • Wendt, J. and Aigner, T., 1985, Facies patterns and depositional environments of Palaeozoic cephalopod limestones. Sedimentary Geology, 44, 263–300.

    Article  ADS  Google Scholar 

  • Woo, J. and Chough, S.K., 2007, Depositional processes and sequence stratigraphy of the Jigunsan Formation (Middle Ordovician), Tae-baeksan Basin, mideast Korea: implications for basin geometry and sequence development. Geosciences Journal, 11, 331–355.

    Article  ADS  Google Scholar 

  • Woo, K.S. and Ju, S.O., 2016, Stratigraphic and sedimentological meaning of the Yongtan Group (Joseon Supergroup), Korea. 2016 Fall Joint Conference of the Geological Science in Korea (Abstract), Pyeongchang, South Korea, Oct. 26–29, p. 98.

  • Woo, K.S. and Park, B.K., 1989, Depositional environments and diagenesis of the sedimentary rocks, Choseon Supergroup, Korea: past, present, and future; the state of the art. Journal of the Geological Society of Korea, 25, 347–363.

    Google Scholar 

  • Wright, VP., 1984, Peritidal carbonate facies models: a review. Geological Journal, 19, 309–325.

    Article  ADS  Google Scholar 

  • Yoo, C.M. and Lee, Y.I., 1997, Depositional cyclicity of the Middle Ordovician Yeongheung Formation, Korea. Carbonates & Evaporites, 12, 192–203.

    Article  CAS  Google Scholar 

  • Zhang, X., Lin, C., Ling, H., Jiang, S., Li, Y., Gao, L., Yao, Y., and Liu, X., 2009, Nodular limestone and its genesis from the Ordovician Yanwashan Formation in western Zhejiang Province. Journal of Palaeogeography, 11, 481–490. (in Chinese with English abstract)

    CAS  Google Scholar 

  • Zhang, Y.F., Li, Z., Wang, Q.C., and Kong, Q.Y., 2005, Diagenesis and its role on the reservoir of Ordovician carbonate rocks in the west Shandong Rise. Chinese Journal of Geology, 40, 207–219. (in Chinese with English abstract)

    Google Scholar 

  • Zhen, Y.I., Zhang, Y., Wang, Z., and Percival, I.G., 2016, Huaiyuan Epeirogeny-Shaping Ordovician stratigraphy and sedimentation on the North China Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 448, 363–370.

    Article  ADS  Google Scholar 

  • Zhiqian, G., Qunan, D., and Xiaolan, H., 2015, Characteristics and controlling factors of carbonate intra-platform shoals in the Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 127, 20–34.

    Article  Google Scholar 

  • Zhongbao, L., Bo, B., Yuying, Z., Wei, D., Dongjun, F., and Haikuan, N., 2017, Types and distribution of the shale sedimentary facies of the Lower Cambrian in Upper Yangtze area, South China. Petroleum Exploration and Development, 44, 20–31.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. T.-Y.S. Park (KOPRI) for engaging in critical discussions and providing valuable feedback on an earlier version of this manuscript. The authors wish to express our sincere thanks to S.H. Park, T.Y. Kim, and H.N. Na for their support in the field and laboratory. We also sincerely appreciate careful review by anonymous reviewers and the editor D.C. Lee (Chungbuk National University), which considerably improved the manuscript. This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTIE) (20214000000500, Training program of CCUS for the green growth) and (20212010200020, Technology development for ensuring safety of CO2 geological storage). This work was also supported by the research grant of Kongju National University in 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Kyun Kwon.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, Y.J., Kwon, Y.K. A new lithostratigraphic scheme of the Ordovician Jeongseon Formation of the Yongtan Group in the Taebaeksan Basin and sequence stratigraphic analysis with discussion on basin geometry. Geosci J (2024). https://doi.org/10.1007/s12303-024-0005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12303-024-0005-5

Key words

Navigation