Skip to main content
Log in

Geochemical implication of Eu isotopic ratio in anorthosite: new evidence of Eu isotope fractionation during feldspar crystallization

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

Rare earth element geochemistry (REE) can provide critical information on the evolution of the crust-mantle system. Europium (Eu) exists in divalent and trivalent states, and Eu2+ can substitute for Ca2+ during plagioclase feldspar crystallization in reducing magmas. This leads to positive Eu anomaly in Ca-plagioclase-rich anorthosite derived from the mantle and negative Eu anomalies in fractionated silica-rich crustal rocks. While many studies have addressed Eu anomalies in REE data, especially in igneous rocks, almost none have evaluated ratios of Eu’s two stable isotopes (151Eu and 153Eu) alongside Eu anomalies. Here we report systematic variation of the Eu isotopic ratio (δ153Eu) from igneous rocks including anorthosite. This study detected a correlation between Eu anomalies and Eu isotopic ratios. Rhyolites and highly fractionated granites exhibited large negative Eu anomalies and negative δ153Eu values while anorthosites exhibited large positive Eu anomalies and positive δ153Eu values. In the case of the highly fractionated igneous rocks with negative Eu anomaly, the Eu isotope fractionation slope varied according to the degree of magmatic differentiation for both volcanic (extrusive) and plutonic (intrusive) rocks. Our finding reveals that Eu isotope fractionation in igneous rocks can provide new information related to magmatic differentiation and plagioclase feldspar crystallization including anorthosite formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashwal, L.D., 1993, Anorthosites. Springer, Berlin, 422 p.

    Book  Google Scholar 

  • Ashwal, L.D. and Bybee, G.M., 2017, Crustal evolution and temporality of anorthosites. Earth-Science Reviews, 173, 307–330. https://doi.org/10.1016/j.earscirev.2017.09.002

    Article  Google Scholar 

  • Belli, P., Bernabei, R., Cappella, F., Cerulli, R., Dai, C.J., Danevich, F.A., dAngelo, A., Incicchitti, A., Kobychev, VV, Nagorny, S.S., Nisi, S., Nozzoli, F., Prosperi, D., Tretyak, V.l., and Turchenko, S.S., 2007, Search for a decay of natural europium. Nuclear Physics A, 789, 15–19. https://doi.org/10.1016/j.nuclphysa.2007.03.001

    Article  Google Scholar 

  • Bowen, N.L., 1956, The Evolution of the Igneous Rocks. Dover, New York, 332 p.

    Google Scholar 

  • Burnham, A.D., Berry, A.J., Halse, F.R., Schofield, P.F., Cibin, G., and Mosselmans, J.F.W., 2015, The oxidation state of europium in silicate melts as a function of oxygen fiigacity, composition and temperature. Chemical Geology, 411, 248–259. https://doi.org/10.1016/j.chemgeo.2015.07.002

    Article  Google Scholar 

  • Coryell, C.G., Chase, J.W., and Winchester, J.W., 1963, A procedure for geochemical interpretation of terrestrial rare-earth abundance patterns. Journal of Geophysical Research, 68, 559–566. https://doi.org/10.1029/JZ068i002p00559

    Article  Google Scholar 

  • Dauphas, N., Roskosz, M., Alp, E.E., Neuville, D.R., Hu, M.Y., Sio, C.K., Tissot, F.L.H., Zhao, J.L. Tissandier, L., Medard, E., and Cordier, C., 2014, Magma redox and structural controls on iron isotope variations in Earth’s mantle and crust. Earth and Planetary Science Letters, 398, 127–140. https://doi.org/10.1016/j.epsl.2014.04.033

    Article  Google Scholar 

  • Dubinina, E.O. and Borisov, A.A., 2018, Structure and composition effects on the oxygen isotope fractionation in silicate melts. Petrology, 26, 127–140.

    Article  Google Scholar 

  • Dubois, J.C., Retail, G., and Cesario, J., 1992, Isotopic analysis of rare earth elements by total vaporization of samples in thermal ioniza-tion mass spectrometry. Internal Journal of Mass Spectrometry and Ion Processes, 120, 163–317. https://doi.org/10.1016/0168-1176(92)85046-3

    Article  Google Scholar 

  • Fowler, A.D. and Doig, R., 1983, The significance of europium anomalies in the REE spectra of granites and pegmatites, Mont Laurier, Quebec. Geochimica et Cosmochimica Acta, 47, 1131–1137. https://doi.org/10.1016/0016-7037(83)90243-0

    Article  Google Scholar 

  • Garlick, G.D., 1966, Oxygen isotope fractionation in igneous rocks. Earth and Planetary Science Letters, 1, 361–368.

    Article  Google Scholar 

  • Holder, R.M., Hacker, B.R., Kylander-Clark, A.R.C., and Cottle, J.M., 2015, Monazite trace-element and isotopic signatures of (ultra) high pressure metamorphism: examples from the Western Gneiss Region, Norway. Chemical Geology, 409, 99–111. https://doi.org/10.1016/j.chemgeo.2015.04.021

    Article  Google Scholar 

  • Hu, J.Y., Dauphas, N., Tissot, F.L.H., Yokochi, R., Ireland, T.J., Zhang, Z., and Davis, A.M., 2021, Heating events in the nascent solar system recorded by rare earth element isotopic fractionation in refractory inclusions. Science Advances, 7. https://doi.org/10.1126/sciadv.abc2962

  • Ismail, I.M., Nomura, M., and Fujii, Y., 1998, Isotope effects of europium in ligand exchange system and electron exchange system using ionexchange displacement chromatography. Journal of Chromatography A, 808, 185–191. https://doi.org/10.1016/S0021-9673(98)00116-2

    Article  Google Scholar 

  • Jeong, J.-G., Kim, W-S., and Seo, B.-M., 1991, Differentiation of the plutonic rocks in Saengcho-Myeon, Sancheong-gun: trace element modelling for the magmatic differentiation. Journal of Mineralogi-cal Society of Korea, 4, 69–89. (with English abstract in Korean)

    Google Scholar 

  • Kang, S.-W, Yoo, B.-Y., Ryoo, C., and Kim, Y.-J., 1994, Petrochemistry of plutons in the Hamyang-Macheon Area, Gyeongnam. Journal of Korean Earth Science Society, 15, 100–114. (with English abstract in Korean)

    Google Scholar 

  • Kwon, S.T. and Jeong, J.G., 1990, Preliminary Sr-Nd study of the Hadong-Sancheong anorthositic rocks in Korea: implication for their origin and for the Precambrian tectonics. Journal of the Geological Society of Korea, 26, 341–349.

    Google Scholar 

  • Lee, B.C., Kee, W-S., Byun, U.H., and Kim, S.W, 2021, Statherian (ca. 1714-1680 Ma) extension-related magmatism and deformation in the southwestern Korean Peninsula and its geological significance: constraints from the petrological, structural, geochemical and geo-chronogical studies of newly identified granitoids, Minerals, 11, 557. https://doi.org/10.3390/min11060557

    Article  Google Scholar 

  • Lee, S.-G., Asahara, Y., Tanaka, T., Lee, S.R., and Lee, T., 2013, Geo-chemical significance of the Rb-Sr, La-Ce and Sm-Nd isotope systems in A-type rocks with REE tetrad patterns and negative Eu and Ce anomalies: The Cretaceous Muamsa and Weolaksan granites, South Korea. Chemie der Erde, 73, 75–88. https://doi.org/10.1016/j.chemer.2012.11.008

    Article  Google Scholar 

  • Lee, S.-G., Kim, T.-K., Lee, J.-S., and Song, Y.-H., 2006, Rb-Sr isotope geochemistry in Seokmodo granitoids and hot spring, Gwangwha: an application of Sr isotope for clarifying the source of hot spring. Journal of Petrological Society of Korea, 15, 60–71. (with English abstract in Korean)

    Google Scholar 

  • Lee, S.-G., Kim, T., Tanaka, T., Lee, S.-R., and Lee, J.-I., 2016, Effect on the measurement of trace element by pressure bomb and conventional teflon vial methods in the digestion technique. Journal of Petrological Society of Korea, 25, 1–13. (with English abstract in Korean)

    Article  Google Scholar 

  • Lee, S.-G., Kim, J.-K., Yang, D.-Y., and Kim, J.-Y., 2008a, Rare earth element geochemistry and Nd isotope composition of stream sediments, south Han River drainage basin, Korea. Quaternary International, 176–177, 121–134. https://doi.org/10.1016/j.quaint.2007.05.012

    Article  Google Scholar 

  • Lee, S.-G., Lee, T.J., and Shin, H., 2008b, Rb-Sr age and its geochemical implication of granitoid cores from deep borehole at Pohang area, Korea. Journal of the Geological Society of Korea, 44, 409–423. (with English abstract in Korean)

    Google Scholar 

  • Lee, S.-G. and Tanaka, T., 2019, Determination of Eu isotopic ratio by multi-collector inductively coupled plasma mass spectrometry using a Sm internal standard. Spectrochimica Acta: Part B, 156, 42–50. https://doi.org/10.1016/j.sab.2019.04.011

    Article  Google Scholar 

  • Lee, S.-G. and Tanaka, T., 2021a, Eu isotope fractionation in highly fractionated igneous rocks with large Eu negative anomaly. Geo-chemical Journal, 55/6, e9–e17. https://doi.org/10.2343/geochemj.2.0631

    Google Scholar 

  • Lee, S.-G. and Tanaka, T., 2021b, Gd matrix effects on Eu isotope frac-tionation using MC-ICP-MS: optimizing europium isotope ratio measurements in geological rock samples. International Journal of Mass Spectrometry, 469. https://doi.org/10.1016/j.ijms.2021.116668

  • Lee, S.-G. and Tanaka, T., 2021c, Eu isotope data of NIST3117a standard reagent for determination of Eu isotope fractionation in geological rocks using MC-ICP-MS. Data in Brief, 38, 107379. https://doi.org/10.1016/j.dib.2021.107369

    Article  Google Scholar 

  • Lee, S.-G., Tanaka, T., and Lee, M., 2022, Geochemical implication of Eu isotopic ratio in anorthosite: new evidence of Eu isotope frac-tionation during feldspar crystallization. EarthArXiv. https://doi.org/10.31223/X5QQ05

  • Lee, Y., Cho, M., Cheong, WS., and Yi, K., 2014, A massif-type (~1.86 Ga) anorthosite complex in the Yeongnam Massif, Korea: late-oro-genic emplacement associated with the mantle delamination in the North China Craton. Terra Nova, 26, 408–416.

    Article  Google Scholar 

  • Masuda, A., 1962, Regularities in variation of relative abundances of lanthanide elements and attempt to analyze separation-index patterns of some minerals. Journal of Earth Sciences, Nagoya University, 10, 173–187.

    Google Scholar 

  • McDonough, WF. and Sun, S.-S., 1995, The composition of the Earth. Chemical Geology, 120, 15–19. https://doi.org/10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • Millet, M.-A., Dauphas, N., Greber, N. D., Burton, K.W., Dale, C.W., Debret, B., Macpherson, C.G., Nowell, G.M., and Williams, H.M., 2016, Titanium stable isotope investigation of magmatic processes on the Earth and Moon. Earth and Planetary Science Letters, 449, 197–205. https://doi.org/10.1016/j.epsl.2016.05.039

    Article  Google Scholar 

  • Möller, P. and Muecke, G.K., 1984, Significance of europium anomalies in silicate melts and crystal-melt equilibria: a re-evaluation. Contributions to Mineralogy and Petrology, 87, 242–250. https://doi.org/10.1007/BF00373057

    Article  Google Scholar 

  • Moynier, F., Bouvier, A., Blichert-Toft, J., Telouk, P., Gasperini, D., and Albarède, F., 2006, Europium isotopic variations in Allende CAIs and the nature of mass-dependent fractionation in the solar nebula. Geochimica et Cosmochimica Acta, 70, 4287–4294. https://doi.org/10.1016/j.gca.2006.06.1371

    Article  Google Scholar 

  • Nakada, R., Tanimizu, M., and Takahashi, Y., 2013, Difference in the stable isotopic fractionations of Ce, Nd, and Sm during adsorption on iron and manganese oxides and its interpretation based on their local structures. Geochimica et Cosmochimica Acta, 121, 105–119. https://doi.org/10.1016/j.gca.2013.07.014

    Article  Google Scholar 

  • Nuryno, Huber, C.C. and Kleboth, K., 1998, Ion-exchange chromatog-raphy with an oxalic acid-α-hydroxyisobutyric acid eluent for the separation and quantitation of rare-earth elements in monazite and xenotime. Chromatographia, 48, 407–414.

    Article  Google Scholar 

  • Park, Y.-R., Ko, B., and Lee, K.-S., 2004, Oxygen and hydrogen isotope studies of fluid-rock interaction of the Hadong-Sancheong anor-thositic rocks. Journal of Petrological Society of Korea, 13, 224–237.

    Google Scholar 

  • Philpotts, J.A., 1970, Redox estimation from a calculation of Eu2+ and Eu3+ concentrations in natural phases. Earth and Planetary Science Letters, 9, 257–268. https://doi.org/10.1016/0012-821X(70)90036-1

    Article  Google Scholar 

  • Philpotts, J.A. and Schnetzler, C.C., 1968, Europium anomalies and the genesis of basalt. Chemical Geology, 3, 5–13. https://doi.org/10.1016/0009-2541(68)90009-0)

    Article  Google Scholar 

  • Rollinson, H., 1993, Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, Harlow, UK, 352 p.

    Google Scholar 

  • Rosman, K.J.R. and Taylor, P.D.F., 1998, Isotopic composition of the elements 1997. Pure and Applied Chemistry, 70, 217–236.

    Article  Google Scholar 

  • Schaen, A.J., Schoene, B., Dufek, J., Singer, B.S., Eddy, M.P. Jicha, B.R., and Cottle, J.M., 2021, Transient rhyolite melt extraction to produce a shallow granitic pluton. Science Advances, 7. https://doi.org/10.1126/sciadv.abf0604

  • Shearer, C.K. and Papike, J.J., 1989, Is plagioclase removal responsible for the negative Eu anomaly in the source regions of mare basalts? Geochimica et Cosmochimica Acta, 53, 3331–3336. https://doi.org/10.1016/0016-7037(89)90113-0

    Article  Google Scholar 

  • Shollenberger, Q.R. and Brennecka, G.A., 2020, Dy, Er, and Yb isotope compositions of meteorites and their components: constraints on presolar carriers of the rare earth elements. Earth and Planetary Science Letters, 529, 115866. https://doi.org/10.1016/j.epsl.2019.115866

    Article  Google Scholar 

  • Sotiriou, P. and Polat, A., 2023, Petrogenesis of anorthosites throughout Earth history. Precambrian Research, 384, 106936. https://doi.org/10.1016/j.precamres.2022.106936

    Article  Google Scholar 

  • Streckeisen, A., 1976, To each plutonic rock its proper name. Earth-Science Reviews, 12, 1–33. https://doi.org/10.1016/0012-8252(76)90052-0

    Article  Google Scholar 

  • Weill, D.F. and Drake, M.J., 1973, Europium anomaly in plagioclase feldspar: experimental results and semiquantitative model. Science, 180, 1059–1060. https://doi.org/10.1126/science.180.4090.1059

    Article  Google Scholar 

  • Yuan, Y., Guo, J.-L., Zong, K., Feng, L., Wang, Z., Moynier, F., Zhnag, W., Hu, Z., and Xu, H., 2022, Stable zirconium isotopic fraction-ation during alkaline magma differentiation: implications for the differentiation of continental crust. Geochimica et Cosmochimica, 326, 41–55. https://doi.org/10.1016/j.gca.2022.03.035

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the Principal Research Fund of the Korea Institute of Geoscience and Mineral Resources (GP2020-003, GP2021-006) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1F1A1075924, NP2020-012) to S.-G. Lee. This work was also partly supported by grants from Korea Polar Research Institute Project (PE23050) to M.J. Lee. We also would like to thank two anonymous reviewers and Associate Editor, S.R Lee for suggesting substantial improvements of the manuscript. Special thanks are given to Drs. B.C. Lee and W.-S. Kee of KIGAM for providing two Taedo samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Gu Lee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SG., Tanaka, T. & Lee, M.J. Geochemical implication of Eu isotopic ratio in anorthosite: new evidence of Eu isotope fractionation during feldspar crystallization. Geosci J 27, 271–284 (2023). https://doi.org/10.1007/s12303-023-0009-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-023-0009-6

Key words

Navigation