Skip to main content
Log in

Integration of remote sensing and geophysical data for structural lineaments analysis in the Rag-e-Sefid oil/gas field and surrounding areas, SW Iran

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

The major faults in the Rag-e-Sefld oil/gas field and surrounding areas are detected by integrating digital satellite, aero-magnetic, and seismic data to improve resolution and reduce ambiguity. The main structural lineaments are extracted through the processing of satellite images. The continuity of the lineaments onto the magnetic basement is analyzed by processing the aeromagnetic data, which reveals the distribution of the basement faults, their relationship with each other, and their segmentation or continuation in the magnetic basement. The seismic profiles across the major faults support resolving the predominant geological structures of the region and identifying the sense of movement on the fault surfaces. In addition, fieldwork was performed to verify the detections and characterize the status and mechanism of the identified faults. The results indicate that the main detected faults in the area are classified into seven major categories: the Nourooz-Hendijan-Izeh, NW and SE Rag-e-Sefid, Zagros Frontal, Kharg-Mish, Izeh, and Mountain Front faults. The Rag-e-Sefid and the Nourooz-Hendijan-Izeh Faults have been considered critical structural lineaments in creating the final geometry of the Rag-e-Sefid anticline and have controlled the fracture characteristics in the Asmari reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelkareem, M., Hamimi, Z., El-Bialy, M.Z., Khamis, H., and Abdelwahed, S.A., 2021, Integration of remote-sensing data for mapping lithological and structural features in the Esh El-Mallaha area, western Gulf of Suez, Egypt. Arabian Journal of Geosciences, 14, 497. https://doi.org/10.1007/s12517-021-06791-3

    Article  Google Scholar 

  • Abdollahie Fard, I., Braathen, A., Mokhtari, M., and Alavi, S.A., 2006, Interaction of the Zagros fold-thrust belt and the Arabian-type, deep-seated folds in the Abadan plain and the Dezful embayment, SW Iran. Petroleum Geoscience, 12, 347–362. https://doi.org/10.1144/1354-079305-706

    Article  Google Scholar 

  • Abdullah, A., Nassr, S., and Ghaleeb, A., 2013b, Remote sensing and geographic information system for fault segments mapping a study from Taiz area, Yemen. Journal of Geological Research, 2013, 1–16. https://doi.org/10.1155/2013/201757

    Article  Google Scholar 

  • Abu El-Ata, A.S., EI-Khafeef, A.A., Ghoneimi, A.E., Abd Alnabi, S.A., and Al-Badani, M.A., 2013, Applications of aeromagnetic data to detect the basement tectonics of eastern Yemen region. Egyptian Journal of Petroleum, 22, 277–292. https://doi.org/10.1016/j.ejpe.2013.06.007

    Article  Google Scholar 

  • Agard, P., Monie, P., Gerber, W., Omrani, J., Molinaro, M., Meyer, B., Labrousse, L., Vrielynck, B., Jolivet, L., and Yamato, P., 2006, Transient, syn-obduction exhumation of Zagros blue schists inferred from P-T, deformation, time and kinematic constraints: implications for Neo-Tethyan wedge dynamics. Journal of Geophysical Research, 111, 1–28. https://doi.org/10.1029/2005JB004103

    Article  Google Scholar 

  • Agard, P., Omrani, J., Jolivet, J., and Mouthereau, F., 2005, Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Science, 94, 401–419. https://doi.org/10.1007/s00531-005-0481-4

    Article  Google Scholar 

  • Ahmadhadi, F., Lacombe, O., and Daniel, J.M., 2007, Early reactivation of basement faults in central Zagros (SW Iran): evidence from prefolding fracture populations in the Asmari formation and lower Tertiary paleogeography. In: Lacombe, O., Lavé, J., Vergés, J., and Roure, F. (eds.), Thrust Belts and Foreland Basins: from Fold Kinematics to Hydrocarbon Systems. Frontiers in Earth Science, Springer, Berlin, p. 205–228. https://doi.org/10.1007/978-3-540-69426-7_11

    Chapter  Google Scholar 

  • Ahmadi, H. and Pekkan, E., 2021, Fault-based geological lineaments extraction using remote sensing and GIS—a review. Geosciences, 11, 183. https://doi.org/10.3390/geosciences11050183

    Article  Google Scholar 

  • Akinlalu, A.A., Adelusi, A.O., Olayanju, G.M., Adiat, K.A.N., Omosuyi, G.O., Anifowose, A.Y.B., and Akeredolu, B.E., 2018, Aeromagnetic mapping of basement structures and mineralization characterization of Ilesa Schist Belt, southwestern Nigeria. Journal of African Earth Sciences, 138, 383–391. https://doi.org/10.1016/j.jafrearsci.2017.11.033

    Article  Google Scholar 

  • Al Amoush, H., Hammouri, N., Al Farajat, M., Salameh, E., Diabat, A., Hassoneh, M., and Al Adamat, R., 2013, Integration of aeromagnetic data and Landsat imagery for structural analysis purposes: a case study in the southern part of Jordan. Journal of Geographic Information System, 5, 198–207. https://doi.org/10.4236/jgis.2013.53019

    Article  Google Scholar 

  • Alavi, M., 1994, Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229, 211–238. https://doi.org/10.1016/0040-1951(94)90030-2

    Article  Google Scholar 

  • Alavi, M., 2004, Regional stratigraphy of the Zagros fold-thrust belt of Iran, and its pro-foreland evolution. American Journal of Science, 304, 1–20. https://doi.org/10.2475/ajs.304.1.1

    Article  Google Scholar 

  • Alcaldea, J., Bond, C.E., Johnson, G., Butler, R.W.H., Cooper, M.A., and Ellis, J.F., 2017, The importance of structural model availability on seismic interpretation. Journal of Structural Geology, 97, 161–171. https://doi.org/10.1016/j.jsg.2017.03.003

    Article  Google Scholar 

  • Ali, E.A., El Khidir, S.O., Babikir, I.A.A., and Abdelrahman, E.M., 2012, Landsat ETM+7 digital image processing techniques for lithological and structural lineament enhancement: a case study around Abidiya area, Sudan. The Open Remote Sensing Journal, 5, 83–89. https://doi.org/10.2174/1875413901205010083

    Article  Google Scholar 

  • Ali, S.A. and Pirasteh, S., 2004, Geological applications of Landsat enhanced thematic mapper (ETM) data and geographic information system (GIS), mapping and structural interpretation in south-west Iran, Zagros structural belt. International Journal of Remote Sensing, 25, 4715–4727. https://doi.org/10.1080/01431160410001688295

    Article  Google Scholar 

  • Allen, M., Jackson, J., and Walker, R., 2004, Late Cenozoic reorganization of the Arabia- Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics, 23, 1–16. https://doi.org/10.1029/2003TC001530

    Google Scholar 

  • Allou, G., Ouattara, G., Coulibaly, Y., and Bonin, B., 2015, The Landsat 7 ETM+ remote sensing imagery for lithological and structural mapping in the central Côte D’Ivoire (West Africa): case of Dabakala Area. European Scientific Journal, 11, 141–163. https://doi.org/10.19044/esj.2015.v11n36p%25p

    Google Scholar 

  • Almasi, A., Jafarirad, A., Kheyrollahi, H., Rahimi, M., and Afzal, P., 2014, Evaluation of structural and geological factors in orogenic gold type mineralization in the Kervian area, north-west Iran, using airborne geophysical data. Exploration Geophysics, 45, 261–270. https://doi.org/10.1071/EG13053

    Article  Google Scholar 

  • Alsharhan, A.S., 2014, Petroleum systems in the Middle East. In: Rollinson, H.R., Searle, M.P., Abbasi, A.I., Al-Lazki, A.I., and Al Kindi, M.H. (eds.), Tectonic Evolution of the Oman Mountains. Geological Society, London, Special Publications, 392, p. 361–408. https://doi.org/10.1144/SP392.19

    Google Scholar 

  • Alshayef, M., Mohammed, A., Javed, A., and Albaroot, M., 2017, Manual and automatic extraction of lineaments from multispectral image in part of Al-Rawdah, Shabwah, Yemen by using remote sensing and GIS technology. International Journal of New Technology and Research, 3, 67–73.

    Google Scholar 

  • Anwar, A., Juhari, M.A., and Ibrahim, A.A., 2009, Comparison of Landsat TM and SPOT data for lineament mapping in Hulu Lepar area, Pahang, Malaysia. European Journal of Scientific Research, 34, 406–415.

    Google Scholar 

  • Aouragh, M.H., Essahlaoui, A., El Ouali, A., El Hmaidi, A., and Kamel, S., 2012, Lineaments frequencies from Landsat ETM+ of the middle atlas plateau (Morocco). Research Journal of Earth Sciences, 4, 5–11. https://doi.org/10.5829/idosi.rjes.2012.4.1.1106

    Google Scholar 

  • Asadi Mehmandosti, E., Adabi, M.H., Bowden, S.A., and Alizadeh, B., 2015, Geochemical investigation, oil-oil and oil-source rock correlation in the Dezful embayment, Marun oilfield, Zagros, Iran. Marian and Petroleum Geology, 68, 648–663. https://doi.org/10.1016/j.marpetgeo.2015.01.018

    Article  Google Scholar 

  • Ayday, C. and Gumusluoglu, E., 2008, Detection and interpretation of geological linear features on the satellite images by using gradient filtering and principal component analysis. 21st International Congress for Photogrammetry and Remote Sensing, Beijing, Jul. 3–11, p. 1207–1210.

  • Azizzadeh, M. and Mola Mehr Alizadeh, F., 2011, Structural analysis of the Izeh fault in the central Zagros using remote sensing techniques. Physical Geography Research Quarterly, 43, 491307.

    Google Scholar 

  • Babaahmadi, A. and Rosenbaum, G., 2013, Kinematics of the Demon Fault: implications for Mesozoic strike-slip faulting in eastern Australia. Australian Journal of Earth Sciences, 60, 255–269. https://doi.org/10.1080/08120099.2013.762943

    Article  Google Scholar 

  • Babaahmadi, A., Yassaghi, A., Naeimi, A., Dini, G.H.R., and Taghipour, S., 2010, Mapping quaternary faults in the west of Kavir plain, north-central Iran, from satellite imageries. International Journal of Remote Sensing, 31, 5111–5125. https://doi.org/10.1080/01431160903283884

    Article  Google Scholar 

  • Bahroudi, A. and Talbot, C.J., 2003, The configuration of the basement beneath the Zagros basin. Journal of Petroleum Geology, 26, 257–282. https://doi.org/10.1111/j.1747-5457.2003.tb00030.x

    Article  Google Scholar 

  • Baniasad, A., Sachse, V, Littke, R., and Soleimany, B., 2019, Burial, temperature and maturation history of cretaceous source rocks in the Persian Gulf, offshore SW Iran: 3D basin modeling. Journal of Petroleum Geology, 42, 125–144. https://doi.org/10.1111/jpg.12727

    Article  Google Scholar 

  • Barker, S.L.L., Cox, S.F., Eggins, S.M., and Gagan, M.K., 2006, Micro-chemical evidence for episodic growth of antitaxial veins during fracture-controlled fluid flow. Earth Planetary Science Letters, 250, 331–344. https://doi.org/10.1016/j.epsl.2006.07.051

    Article  Google Scholar 

  • Berberian, M., 1995, Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morpho-tectonics. Tectonophysics, 241, 193–224. https://doi.org/10.1016/0040-1951(94)00185-C

    Article  Google Scholar 

  • Bhosle, B., Parkash, B., Awasthi, A.K., Singh, V.N., and Singh, S., 2007, Remote sensing-GIS and GPR studies of two active faults western Gangetic plains, India. Journal of Applied Geophysics, 61, 155–164. https://doi.org/10.1016/j.jappgeo.2006.10.003

    Article  Google Scholar 

  • Bigi, S., Carminati, E., Aldega, L., Trippetta, F., and Kavoosi, M.A., 2018, Zagros fold and thrust belt in the Fars province (Iran): control of thickness/rheology of sediments and pre-thrusting tectonics on structural style and shortening. Marine and Petroleum Geology, 91, 211–224. https://doi.org/10.1016/j.marpetgeo.2018.01.005

    Article  Google Scholar 

  • Campbell, F.M., Ghisetti, F., Kaiser, A.E., Green, A.G., Horstmeyer, H., and Gorman, A.R., 2010, Structure and evolution of the seismically active Ostler fault zone (New Zealand) based on interpretations of multiple high-resolution seismic reflection profiles. Tectonophysics, 495, 195–212. https://doi.org/10.1016/j.tecto.2010.09.016

    Article  Google Scholar 

  • Carminati, E., Aldega, L., Trippetta, F., Shaban, A., Narimani, H., and Sherkati, S., 2014, Control of folding and faulting on fracturing in the Zagros (Iran): the Kuh-e-Sarbalesh anticline. Journal of Asian Earth Science, 79, 400–414. https://doi.org/10.1016/j.jseaes.2013.10.018

    Article  Google Scholar 

  • Chen, S. and Zhou, Y., 2005, Classifying depth-layered geological structures on Landsat TM images by gravity data: a case study of the western slope of Songliao basin, northeast China. International Journal of Remote Sensing, 26, 2741–2754. https://doi.org/10.1080/01431160500104210

    Article  Google Scholar 

  • Chinkaka, E., 2019, Integrating Worldview-3, Aster and aeromagnetic data for lineament structural interpretation and tectonic evolution of the Haib Area, Nambia. M.Sc. Thesis, University of Twente, Enschede, Netherlands, 81 p.

    Google Scholar 

  • Chisenga, C., 2015, Understanding the earth structure underneath Botswana: the tectonic model and its relationship to the basement and crustal thickness. M.Sc. Thesis, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, Netherlands, 67 p.

    Google Scholar 

  • Chopra, S. and Marfurt, K.J., 2007, Seismic Attributes for Prospect Identification and Reservoir Characterization. SEG Geophysical Developments Series No. 11, Society of Exploration Geophysicists, Tulsa, USA, 481 p.

    Book  Google Scholar 

  • Cooper, G.R.J. and Cowan, D.R., 2005, Differential reduction to the pole. Computers & Geosciences, 31, 989–999. https://doi.org/10.1016/j.cageo.2005.02.005

    Article  Google Scholar 

  • Cooper, R.J., 1997, GravMap and PFproc: software for filtering geophysical map data. Computer and Geosciences, 23, 91–101. https://doi.org/10.1016/S0098-3004(96)00064-7

    Article  Google Scholar 

  • Dana, S., Almasian, M., Soltani, M., and Kamel, S.R., 2015, Structural analysis of a segment in Qatar-Kazerun Fault using satellite images of Landsat 8. Open Journal of Geology, 5, 499–513. https://doi.org/10.4236/ojg.2015.57046

    Article  Google Scholar 

  • Dashti, R., Rahimpour-Bonaba, H., and Zeinali, M., 2018, Fracture and mechanical stratigraphy in naturally fractured carbonate reservoirs — a case study from Zagros region. Marine and Petroleum Geology, 97, 466–479. https://doi.org/10.1016/j.marpetgeo.2018.06.027

    Article  Google Scholar 

  • Davis, D.M. and Engelder, T., 1985, Role of salt in fold-and-thrust belts. Tectonophysics, 119, 67–88. https://doi.org/10.1016/0040-1951(85)90033-2

    Article  Google Scholar 

  • DeMets, C., Gordon, R.G., and Argus, D.F., 2010, Geologically current plate motions. Geophysical Journal International, 181, 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x

    Article  Google Scholar 

  • DeMets, C., Gordon, R.G., Argus, D.F., and Stein, S., 1990, Current plate motions. Geophysical Journal International, 101, 425–478. https://doi.org/10.1111/j.1365-246X.1990.tb06579.x

    Article  Google Scholar 

  • Derikvand, B., Alavi, S.A., Abdollahie Fard, I., and Hajialibeigi, H., 2018, Folding style of the Dezful embayment of Zagros belt: signatures of detachment horizons, deep-rooted faulting, and syn-deformation deposition. Marian and Petroleum Geology, 91, 501–518. https://doi.org/10.1016/j.marpetgeo.2018.01.030

    Article  Google Scholar 

  • El Gout, R., Khattach, D., Houari, M.R., Kaufmann, O., and Aqil, H., 2010, Main structural lineaments of north-eastern Morocco derived from gravity and aeromagnetic data. Journal of African Earth Sciences, 58, 255–271. https://doi.org/10.1016/j.jafrearsci.2010.03.006

    Article  Google Scholar 

  • Eldosouky, A.M., Abdelkareem, M., and Elkhateeb, S.O., 2017, Integration of remote sensing and aeromagnetic data for mapping structural features and hydrothermal alteration zones in Wadi Allaqi area, South Eastern Desert of Egypt. Journal of African Earth Sciences, 130, 28–37. https://doi.org/10.1016/j.jafrearsci.2017.03.006

    Article  Google Scholar 

  • Elmahdy, S.I., Mohamed, M.M., and Ali, T.A., 2021, Automated detection of lineaments express geological linear features of a tropical region using topographic fabric grain algorithm and the SRTM DEM. Geocarto International, 36, 76–95. https://doi.org/10.1080/10106049.2019.1594393

    Article  Google Scholar 

  • El-Sawy, K., Atef, M.I., Mohamed, A., and Waleed, A., 2016, Automated, manual lineaments extraction and geospatial analysis for Cairo-Suez district (northeastern Cairo-Egypt), using remote sensing and GIS. International Journal of Innovative Science, Engineering and Technology, 3, 491–500.

    Google Scholar 

  • Eshanibli, A.S., Osagie, A.U., Ismail, N.A., and Ghanush, H.B., 2021, Analysis of gravity and aeromagnetic data to determine the structural trend and basement depth beneath the Ajdabiya Trough in northeastern Libya. SN Applied Sciences 3, 228. https://doi.org/10.1007/s42452-021-04263-7

    Article  Google Scholar 

  • Farahbakhsh, E., Chandra, R., Olierook, H.K.H., Scalzo, R., Clark, C., Reddy, S.M., and Müller, R.D., 2020, Computer vision-based framework for extracting tectonic lineaments from optical remote sensing data. International Journal of Remote Sensing, 41, 1760–1787. https://doi.org/10.1080/01431161.2019.1674462

    Article  Google Scholar 

  • Farahzadi, E., Cherchi, A., Jamil Pour, M., and Saedi, G.H., 2015, The Survey of trajectory and effects of Hendijan-Bahregansar basement fault in Dezful Embayment. Journal of Advanced Applied Geology (Shahid Chamran University, Ahvaz, Iran), 5, 45–59. https://doi.org/10.22055/aag.2015.11526 (In Farsi).

    Google Scholar 

  • Gaber, G.M., Saleh, S., and Toni, M., 2022, Crustal thickness and structural pattern evaluation of Sinai Peninsula using three-dimensional density modeling with aeromagnetic and earthquake data. Acta Geophysica, 70, 639–657. https://doi.org/10.1007/s11600-022-00744-4

    Article  Google Scholar 

  • Ghanadian, M., Faghih, A., Abdollahie Fard, I., Grasemann, B., Soleimany, B., and Maleki, M., 2017b, Tectonic constraints for hydrocarbon targets in the Dezful embayment, Zagros fold and thrust belt, SW Iran. Journal of Petroleum Science and Engineering, 157, 1220–1228. https://doi.org/10.1016/j.petrol.2017.02.004

    Article  Google Scholar 

  • Ghanadian, M., Faghih, A., Abdollahie Fard, I., Kusky, T., and Maleki, M., 2017a, On the role of incompetent strata in the structural evolution of the Zagros fold-thrust belt, Dezful embayment, Iran. Marine and Petroleum Geology, 81, 320–333. https://doi.org/10.1016/j.marpet-geo.2017.01.010

    Article  Google Scholar 

  • Ghasemi, A. and Talbot, C.J., 2006, A new tectonic scenario for the Sanandaj-Sirjan zone (Iran). Journal of Asian Earth Science, 26, 683–693. https://doi.org/10.1016/j.jseaes.2005.01.003

    Article  Google Scholar 

  • Ghazban, F. and Motiei, H., 2007, Petroleum geology of the Persian Gulf. Tehran University and National Iranian Oil Company Publications, Tehran, Iran, 707 p.

    Google Scholar 

  • Gibson, P.J. and Power, C.H., 2000, Introductory Remote Sensing: Digital Image Processing and Applications. Routledge, London, UK, 268 p.

    Google Scholar 

  • Han, L., Liu, Z., Ning, Y., and Zhao, Z., 2018, Extraction and analysis of geological lineaments combining a DEM and remote sensing images from the northern Baoji loess area. Advances in Space Research, 62, 2480–2493. https://doi.org/10.1016/j.asr.2018.07.030

    Article  Google Scholar 

  • Hansen, R.O. and Pawlowski, R.S., 1998, Reduction to the pole at low latitudes by Weiner filtering. Geophysics, 54, 1607–1613. https://doi.org/10.1190/1.1442628

    Article  Google Scholar 

  • Hinze, W.J., Von Frese, R.R.B., and Saad, A.H., 2013, Gravity and Magnetic Exploration: Principles, Practices, and Applications. Cambridge University Press, New York, 512 p. https://doi.org/10.1017/CBO9780511843129

    Google Scholar 

  • Holden, E.J., Wong, J.C., Kovesi, P., Wedge, D., Dentith, M., and Bagas, L., 2012, Identifying structural complexity in aeromagnetic data: an image analysis approach to greenfield gold exploration. Ore Geology Reviews, 46, 47–59. https://doi.org/10.1016/j.oregeorev.2011.11.002

    Article  Google Scholar 

  • Hung, L.Q., Batelaan, O., and De Smedt, F., 2005, Lineament extraction and analysis, comparison of Landsat ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam. Proceedings of SPIE 5983, Remote Sensing for Environmental Monitoring, GIS Applications, and Geology V, 59830T, Bruges, Belgium, Oct. 29. https://doi.org/10.1117/12.627699

  • Ibeneme, S.I., Okereke, C.N., Selemo, A.O., Onu, N.N., Onyekuru, S.O., Nwagbara, J.O., Ikoro, D.O., and Enwerem, C.I., 2013, Structural styles interpreted from aeromagnetic and Landsat data of Bel and adjoining areas, middle Benue trough, Nigeria. International Journal of Remote Sensing and Geosciences, 2, 50–55.

    Google Scholar 

  • Jahani, S., Hassanpour, J., Mohammadi-Firouz, S., Letouzey, J., Frizon de Lamotte, D., Alavi, S.A., and Soleimany, B., 2017, Salt tectonics and tear faulting in the central part of the Zagros fold-thrust belt, Iran. Marine and Petroleum Geology, 86, 426–446. https://doi.org/10.1016/j.marpetgeo.2017.06.003

    Article  Google Scholar 

  • Javid, M., Memarian, H., Zarofi, R.A., Tokhmechi, B., Khoshbakht, F., and Mozaffari, S.M., 2012, Identification of fractures in electric image logs using image processing techniques and genetic algorithm. Journal of Petroleum Research, 72, 85–98. https://doi.org/10.22078/pr.2013.154

    Google Scholar 

  • Kavak, K.S. and Cetin, H., 2007, A detailed geologic lineament analysis using Landsat TM data of Gölmarmara/Manisa region, Turkey. Online Journal of Earth Sciences, 1, 145–153.

    Google Scholar 

  • Kaya, S., Muftuoglu, O., and Tuysuz, O., 2004, Tracing the geometry of an active fault using remote sensing and digital elevation model: Ganos segment, North Anatolian fault zone, Turkey. International Journal of Remote Sensing, 25, 3843–3855. https://doi.org/10.1080/01431160310001652394

    Article  Google Scholar 

  • Kazem Shiroodi, S., Ghafoori, M., Faghih, A., Ghanadian, M., Lashkaripour, G.R., and Hafezi Moghadas, N., 2015, Multi-phase inversion tectonics related to the Hendijan-Nowrouz-Khafji fault activity, Zagros mountains, SW Iran. Journal of African Earth Sciences, 111, 399–408. https://doi.org/10.1016/j.jafrearsci.2015.08.015

    Article  Google Scholar 

  • Khadivi, S., Mouthereau, F., Larrasoaña, J.C., Vergés, J., Lacombe, O., Khademi, E., Beamud, E., and Melinte-Dobrinescu, M., 2010, Magnetochronology of syn-orogenic Miocene foreland sediments in the Fars arc of the Zagros folded belt (SW Iran). Basin Research, 22, 918–932. https://doi.org/10.1111/j.1365-2117.2009.00446.x

    Google Scholar 

  • Konyuhov, A.I. and Maleki, B., 2006, The Persian Gulf basin: geological history, sedimentary formations, and petroleum potential. Lithology and Mineral Resources, 41, 344–361.

    Article  Google Scholar 

  • Kordi, M., 2019, Sedimentary basin analysis of the Neo-Tethys and its hydrocarbon systems in the southern Zagros fold-thrust belt and foreland basin. Earth-Science Reviews, 191, 1–11. https://doi.org/10.1016/j.earscirev.2019.02.005

    Article  Google Scholar 

  • Lacombe, O., Mouthereau, F., Kargar, S., and Meyer, B., 2006, Late Cenozoic and modern stress fields in the western Fars (Iran): implications for the tectonic and kinematic evolution of central Zagros. Tectonics, 25, 1–27. https://doi.org/10.1029/2005TC001831

    Article  Google Scholar 

  • Lamontagne, M., Keating, P., and Perreault, S., 2003, Seismotectonic characteristics of the lower St. Lawrence seismic zone, Quebec: insights from geology, magnetics, gravity, and seismic. Canadian Journal of Earth Sciences, 40, 317–336. https://doi.org/10.1139/e02-104

    Article  Google Scholar 

  • Laubach, S.E., Olson, J.E., and Gross, M.R., 2009, Mechanical and fracture stratigraphy. American Association of Petroleum Geologists Bulletin, 93, 1413–1426. https://doi.org/10.1306/07270909094

    Article  Google Scholar 

  • Liu, H.W., Yang, W.N., and Li, Y.G., 2006, The application of remote sensing image digital procession to the extraction of fault zone information based on Mianning-Xichuan area, southeast of Yangtze platform. Contributions to Geology and Mineral Resources Research, 21, 133–136.

    Google Scholar 

  • Lunden, B., Wang, G., and Wester, K., 2001, A GIS-based analysis of data from Landsat TM, airborne geophysical measurements, and digital maps for geological remote sensing in the Stockholm region, Sweden. International Journal of Remote Sensing, 22, 517–532. https://doi.org/10.1080/01431160050505838

    Article  Google Scholar 

  • Mahdavi Basir, H., Javaherian, A., and Tavakoli Yaraki, M., 2013, Multiattribute ant-tracking and neural network for fault detection: a case study of an Iranian oilfield. Journal of Geophysics and Engineering, 10, 015009. https://doi.org/10.1088/1742-2132/10/1/015009

    Article  Google Scholar 

  • Masoumi, F., Eslamkish, T., Honarmand, M., and Abkar, A.A.A., 2017, Comparative study of Landsat-7 and Landsat-8 data using image processing methods for hydrothermal alteration mapping. Resource Geology, 67, 72–88. https://doi.org/10.1111/rge.12117

    Article  Google Scholar 

  • McQuarrie, N. and Van Hinsbergen, D.J.J., 2013, Retro-deforming the Arabia-Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology, 41, 315–318. https://doi.org/10.1130/G33591.1

    Article  Google Scholar 

  • Megwara, J.U. and Udensi, E.E., 2014, Structural analysis using aeromagnetic data: case study of parts of southern Bida basin, Nigeria and the surrounding basement rocks. Earth Science Research, 3, 27–42. https://doi.org/10.5539/esr.v3n2p27

    Article  Google Scholar 

  • Mohamed, L. and Farag, A.Z.A., 2017, Integration of Remote Sensing and Geophysical Applications for Delineation of Geological Structures: Implication for Water Resources in Egypt. AGU Fall Meeting 2017, American Geophysical Union (Abstract), New Orleans, USA, Dec. 11–15, EP33E-01.

  • Molinaro, M., Leturmy, P., Guezou, J.C., Frizon De Lamotte, D., and Eshraghi, S.A., 2005a, The structure and kinematics of the southeastern Zagros fold-thrust belt, Iran: from thin-skinned to thickskinned tectonics. Tectonics, 24, 1–9. https://doi.org/10.1029/2004TC001633

    Article  Google Scholar 

  • Molinaro, M., Zeyen, H., and Laurencin, X., 2005b, Lithospheric structure beneath the southeastern Zagros mountains, Iran: recent slab break-off. Terra Nova, 17, 1–6. https://doi.org/10.1111/j.1365-3121.2004.00575.x

    Article  Google Scholar 

  • Motamedi, H., Sherkati, S., and Sepehr, M., 2012, Structural style variation and its impact on hydrocarbon traps in central Fars, southern Zagros folded belt, Iran. Journal of Structural Geology, 37, 124–133. https://doi.org/10.1016/j.jsg.2012.01.021

    Article  Google Scholar 

  • Motiei, H., 1995, Geology of Iran: Petroleum Geology of Zagros 1 and 2. Geological Survey and Mineral Exploration of Iran (GSI) Publications, Tehran, Iran, 1009 p. (In Farsi)

    Google Scholar 

  • Mouthereau, F., Lacombe, O., and Meyer, B., 2006, The Zagros folded belt (Fars, Iran): constraints from topography and critical wedge modeling. Geophysical Journal International, 165, 336–356. https://doi.org/10.1111/j.1365-246X.2006.02855.x

    Article  Google Scholar 

  • Mouthereau, F., Lacombe, O., and Vergés, J., 2012, Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics, 532–535, 27–60. https://doi.org/10.1016/j.tecto.2012.01.022

    Article  Google Scholar 

  • Muhammad, M. and Awdal, A., 2012, Automatic mapping of lineaments using shaded relief images derived from digital elevation model (DEM) in Erbil-Kurdistan, Northeast Iraq. Advances in Natural and Applied Sciences, 6, 138–146.

    Google Scholar 

  • Narr, W., Schechter, D.W., and Thompson, L.B., 2006, Naturally Fractured Reservoir Characterization. Society of Petroleum Engineers, Richardson, USA, 115 p.

    Book  Google Scholar 

  • Ndougsa-Mbarga, T., Feumoe, A.N.S., Manguelle-Dicoum, E., and Fairhead, J.D., 2012, Delineation of tectonic lineaments using aeromagnetic data for the south-east Cameroon area. GEOFIZIKA, 29, 175–192.

    Google Scholar 

  • Nelson, R.A., 2001, Geological Analysis of Naturally Fractured Reservoirs (2nd edition). Gulf Professional Publishing, Houston, USA, 352 p.

    Google Scholar 

  • NIOC (National Iranian Oil Company), 2010, Geological reports, final well reports, well logs reports, reservoir geological reports, maps, geological and geophysical reports. Internal unpublished reports, Exploration Directorate, Tehran, Iran. (In Farsi) https://www.niocexp.ir/

  • NIOC (National Iranian Oil Company), 2018, Geological reports, final well reports, well logs reports, reservoir geological reports, maps, geological and geophysical reports. Internal unpublished reports, Exploration Directorate, Tehran, Iran. (In Farsi) https://www.niocexp.ir/

  • Oladejo, O.P., Aanuoluwa, A., Ayobami, S.L., Adabanija, M.A., Onumejor, C.A., and Omoregie, I.P., 2020, Aeromagnetic mapping of fault architecture along Lagos-ore axis, southwestern Nigeria. Open Geosciences, 12, 376–389. https://doi.org/10.1515/geo-2020-0100

    Article  Google Scholar 

  • Panagiotakis, C. and Kokinou, E., 2015, Linear pattern detection of geological faults via a topology and shape optimization method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 3–11. https://doi.org/10.1109/JSTARS.2014.2363080

    Article  Google Scholar 

  • Parcharidis, I., Kokkalas, S., Fountoulis, I., and Foumelis, M., 2009, Detection and monitoring of active faults in urban environments: time series interferometry on the cities of Patras and Pyrgos (Peloponnese, Greece). Remote Sensing, 1, 676–696. https://doi.org/10.3390/rs1040676

    Article  Google Scholar 

  • Passchier, C.W. and Trouw, R.A.J., 2005, Microtectonics (2nd edition). Springer, Berlin, Germany, 366 p.

    Google Scholar 

  • Philip, G., 2007, Remote sensing data analysis for mapping active faults in the northwestern part of Kangra Valley, NW Himalaya, India. International Journal of Remote Sensing, 28, 4745–4761. https://doi.org/10.1080/01431160701264243

    Article  Google Scholar 

  • Phillips, J.D., 2001, Processing and interpretation of aeromagnetic data for the Santa Cruze basin-Patagonia Mountain area, south-central Arizona. Open-file Report 2002–98, US Geological Survey, Reston, USA, 15 p. https://doi.org/10.3133/ofr0298

  • Poblet, J. and Lisle, R.J., 2011, Kinematic evolution and structural styles of fold-and-thrust belts. In: Poblet, J. and Lisle, R.J. (eds.), Kinematic Evolution and Structural Styles of Fold-and-thrust Belts. Geological Society, London, Special Publications, 349, p. 1–24. https://doi.org/10.1144/SP349.1

    Google Scholar 

  • Rahimi, E., Maghsoudi, A., and Hezarkhani, A., 2016, Geochemical investigation and statistical analysis on rare earth elements in Lakeh Siyah deposit, Bafq district. Journal of African Earth Sciences, 124, 139–150. https://doi.org/10.1016/j.jafrearsci.2016.09.001

    Article  Google Scholar 

  • Rajagopalan, S., 2003, Analytic signal vs. reduction to pole: solutions for low magnetic latitudes. Exploration Geophysics, 34, 257–262. https://doi.org/10.1071/ASEG2003ab136

    Article  Google Scholar 

  • Rashid, F., Glover, P.W.J., Lorinczi, P., Hussein, D., and Lawrence, J., 2017, Microstructural controls on reservoir quality in tight oil carbonate reservoir rocks. Journal of Petroleum Science and Engineering, 156, 814–826. https://doi.org/10.1016/j.petrol.2017.06.056

    Article  Google Scholar 

  • Rezaie, A.H. and Nogole-Sadat, M.A., 2004, Fracture modeling in Asmari reservoir of Rag-e-Sefid oil-field by using multiwell image log (FMS/FMI). Iranian International Journal of Science, 5, 107–121.

    Google Scholar 

  • Riahi, S., Bahroudi, A., Abedi, M., Aslani, S., and Lentz, D.R., 2021, Evidential data integration to produce porphyry Cu perspectivity map, using a combination of knowledge and data-driven methods. Geophysical Prospecting, 70, 421–437. https://doi.org/10.1111/1365-2478.13092

    Article  Google Scholar 

  • Richards, J.A., 2013, Remote Sensing Digital Image Analysis: An Introduction (5th edition). Springer, Berlin, 496 p. https://doi.org/10.1007/978-3-642-30062-2

    Book  Google Scholar 

  • Romani, L., Rossini, M., and Schenone, D., 2019, Edge detection methods based on RBF interpolation. Journal of Computational and Applied Mathematics, 349, 532–547. https://doi.org/10.1016/j.cam.2018.08.006

    Article  Google Scholar 

  • Saadi, N.M., Aboud, E., Saibi, H., and Watanabe, K., 2008, Integrating data from remote sensing, geology, and gravity for geological investigation in the Tarhunah area, northwest Libya. International Journal of Digital Earth, 1, 347–366. https://doi.org/10.1080/17538940802435844

    Article  Google Scholar 

  • Sahu, A.K. and Ankur, R., 2020, Clustering, connectivity and flow responses of deterministic fractal-fracture net-works. Advances in Geosciences, 54, 149–156. https://doi.org/10.5194/adgeo-54-149-2020

    Article  Google Scholar 

  • Salawu, N.B., Olatunji, S., Adebiyi, L.S., Olasunkanmi, N.K., and Dada, S.S., 2019, Edge detection and magnetic basement depth of Danko area, northwestern Nigeria, from low-latitude aeromagnetic anomaly data. SN Applied Sciences, 1, 1056. https://doi.org/10.1007/s42452-019-1090-3

    Article  Google Scholar 

  • Sarkarinejad, K. and Azizi, A., 2008, Slip partitioning and inclined dextral transpression along the Zagros thrust system, Iran. Journal of Structural Geology, 30, 116–136. https://doi.org/10.1016/j.jsg.2007.10.001

    Article  Google Scholar 

  • Sarkarinejad, K. and Goftari, F., 2019, Thick-skinned and thin-skinned tectonics of the Zagros orogen, Iran: constraints from structural, microstructural and kinematics analyses. Journal of Asian Earth Sciences, 170, 249–273. https://doi.org/10.1016/j.jseaes.2018.10.021

    Article  Google Scholar 

  • Sarp, G., 2005, Lineament analysis from satellite images, north-west of Ankara. M.Sc. Thesis, Middle East Technical University, Ankara, Turkey, 91 p. https://hdl.handle.net/11511/15412

    Google Scholar 

  • Saura, E., Garcia-Castellanos, D., Casciello, E., Parravano, V., Urruela, A., and Vergés, J., 2015, Modeling the flexural evolution of the Amiran and Mesopotamian foreland basins of NW Zagros (Iran-Iraq). Tectonics, 34, 377–395. https://doi.org/10.1002/2014TC003660

    Article  Google Scholar 

  • Schowengerdt, R.A., 2006, Remote Sensing: Models and Methods for Image Processing (3rd edition). Academic Press, Waltham, 560 p.

    Google Scholar 

  • Sepehr, M. and Cosgove, J.W., 2004, Structural framework of the Zagros fold-thrust belt, Iran. Marine and Petroleum Geology, 21, 829–843. https://doi.org/10.1016/j.marpetgeo.2003.07.006

    Article  Google Scholar 

  • Seraj, M. and Ababaf, R., 2008, Image logs interpretation (FMS) of nine well rings from Asmari reservoir of Rag-e-Sefid oil/gas field. National Iranian South Oil Company Report, Number: P-6408, Ahvaz, Iran, 303 p. (In Farsi)

  • Seraj, M., Faghih, A., Motamedi, H., and Soleimany, B., 2020, Major tectonic lineaments influencing the oilfields of the Zagros Fold-Thrust Belt, SW Iran: insights from integration of surface and subsurface data. Journal of Earth Science, 31, 596–610. https://doi.org/10.1007/s12583-020-1303-0

    Article  Google Scholar 

  • Setudehnia, A. and Perry, J.T., 1966, Geological map of the Rag-e-Sefid (1:100,000). No. 25480 E, Iranian Oil Operating Companies, Geological and Exploration Division, Tehran.

    Google Scholar 

  • Shafaii Moghadam, I.H., Corfu, F., and Stern, R.J., 2013, U-Pb zircon ages of Late Cretaceous Nain-Dehshir ophiolites, central Iran. Journal of the Geological Society, 170, 175–184. https://doi.org/10.1144/jgs2012-066

    Article  Google Scholar 

  • Sherkati, S. and Letouzey, J., 2004, Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful embayment), Iran. Marine and Petroleum Geology, 21, 535–554. https://doi.org/10.1016/j.marpetgeo.2004.01.007

    Article  Google Scholar 

  • Sherkati, S., Letouzey, J., and Frizon de Lamotte, D., 2006, Central Zagros fold-thrust belt (Iran): new insights from seismic data, field observations and sandbox modeling. Tectonics, 25. https://doi.org/10.1029/2004TC001766

  • Sherkati, S., Molinaro, M., Frizon de Lamotte, D., and Letouzey, J., 2005, Detachment folding in the central and eastern Zagros fold-belt (Iran): salt mobility, multiple detachments, and late basement control. Journal of Structural Geology, 27, 1680–1696. https://doi.org/10.1016/j.jsg.2005.05.010

    Article  Google Scholar 

  • Silva, J.B.C., 1986, Reduction to the pole as an inverse problem and its application to low-latitude anomalies. Geophysics, 51, 369–382. https://doi.org/10.1190/L1442096

    Article  Google Scholar 

  • Soleimany, B. and Sabat, F., 2010, Style and age of deformation in the NW Persian Gulf. Petroleum Geoscience, 16, 31–39. https://doi.org/10.1144/1354-079309-837

    Article  Google Scholar 

  • Soleimany, B., 2010, Reactivation of deep-seated folds in northwest Persian Gulf. Ph.D. Thesis, University of Barcelona, Barcelona, Spain, 242 p.

    Google Scholar 

  • Soleimany, B., Nalpas, T., and Sabat, F., 2013, Multi detachment analogue models of fold reactivation in transpression: the NW Persian Gulf. Geological Acta, 11, 265–276. https://doi.org/10.1344/105.000001870

    Google Scholar 

  • Soleimany, B., Poblet, J., Bulnes, M., and Sabat, F., 2011, Fold amplification history unraveled from growth strata: the Dorood anticline, NW Persian Gulf. Journal of the Geological Society, 168, 219–234. https://doi.org/10.1144/0016-76492010-085

    Article  Google Scholar 

  • Tajmir Riahi, Z., Sarkarinejad, K., Faghih, A., Soleimany, B., and Payrovian, G., 2021, Impact of inversion tectonics on the spatial distribution of hydrocarbon traps in the NW Persian Gulf and the southern Dezful Embayment, SW Iran. Marine and Petroleum Geology, 134, 105364. https://doi.org/10.1016/j.marpetgeo.2021.105364

    Article  Google Scholar 

  • Takorabt, M., Toubal, A.C., Haddoum, H., and Zerrouk, S., 2018, Determining the role of lineaments in underground hydrodynamics using Landsat 7 ETM+ data, case of the Chott El Gharbi Basin (western Algeria). Arabian Journal of Geosciences, 11, 76. https://doi.org/10.1007/s12517-018-3412-y

    Article  Google Scholar 

  • Talbot, C.J. and Alavi, M., 1996, The past of a future syntaxis across the Zagros. In: Alsop, G.I., Blundell, D.J., and Davison, I. (eds.), Salt Tectonics. Geological Society, London, Special Publications, 100, p. 89–109. https://doi.org/10.1144/GSL.SP.1996.100.01.08

    Google Scholar 

  • Tayeb Hosseiny, F.S., Sepahvand, M.R., Abdollahie Fard, I., and Miri, S.A., 2017, Characterization of the Hendijan-Izeh fault using 2D seismic data, earthquake data, and geological data. Journal of Exploration and Production Oil and Gas, 148, 44–49. (In Farsi) http://ekteshaf.nioc.ir/article-1-2125-fa.html

    Google Scholar 

  • Valero, L., Soleimany, B., Bulnes, M., and Poblet, J., 2015, Evolution of the Nourooz anticline (NW Persian Gulf) deciphered using growth strata: structural inferences to constrain hydrocarbon exploration in Persian offshore anticlines. Marine and Petroleum Geology, 66, 873–889. https://doi.org/10.1016/j.marpetgeo.2015.07.029

    Article  Google Scholar 

  • Verges, J., Goodarzi, M.G.H., Emami, H., Karpuz, R., Efstathiou, J., and Gillespie, P., 2011, Multiple detachment folding in Pusht-e Kuh arc, Zagros: role of mechanical stratigraphy. In: McClay, K., Shaw, J., and Suppe, J. (eds.), Thrust Fault-Related Folding. American Association of Petroleum Geologists Memoir, 94, p. 69–94. https://doi.org/10.1306/13251333M942899

  • Xu, J., Wen, X., Zhang, H., Luo, D., Li, J., Xu, L., and Yu, M., 2020, Automatic extraction of lineaments based on wavelet edge detection and aided tracking by hill shade. Advances in Space Research, 65, 506–517. https://doi.org/10.1016/j.asr.2019.09.045

    Article  Google Scholar 

  • Yassaghi, A., 2006, Integration of Landsat imagery interpretation and geomagnetic data on verification of deep-seated transverse fault lineaments in SE Zagros, Iran. International Journal of Remote Sensing, 27, 4529–4544. https://doi.org/10.1080/01431160600661283

    Article  Google Scholar 

  • Yeomans, C.M., Middleton, M., Shail, R.K., Grebby, S., and Lusty, P.A.J., 2019, Integrated object-based image analysis for semi-automated geological lineament detection in Southwest England. Computers and Geosciences, 123, 137–148. https://doi.org/10.1016/j.cageo.2018.11.005

    Article  Google Scholar 

  • Yilmaz, O., 2001, Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data. Society of Exploration Geophysicists, Tulsa, 2027 p. https://doi.org/10.1190/1.9781560801580

    Book  Google Scholar 

  • Yousefi, M., Moussavi, S.M., and Khatib, M.M., 2019, Analysis of fold and fault-related fracture systems development using image logs at Asmari formation in the Rag-e-Sefid anticline, SW Iran. Geopersia, 9, 279–292. https://doi.org/10.22059/geope.2019.264206.648410

    Google Scholar 

  • Yusof, N., Ramli, M.F., Pirasteh, S., and Shafri, H.Z.M., 2011, Landslides and lineament mapping along the Simpang Pulai to Kg Raja highway, Malaysia. International Journal of Remote Sensing, 32, 4089–4105.

    Article  Google Scholar 

  • Zahra, H. and Oweis, H., 2016, Application of high-pass filtering techniques on gravity and magnetic data of the eastern Qattara Depression area, Western Desert, Egypt, NRIAG Journal of Astronomy and Geophysics, 5, 106–123. https://doi.org/10.1016/j.nrjag.2016.01.005

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express special thanks to Dr. Tae-Seob Kang, editor of Geosciences Journal for editorial assistance. The constructive comments and suggestions by anonymous reviewers improved the scientific content of the manuscript. This research was supported by the Shiraz University Research Council (SURC) grant which is gratefully acknowledged. The authors are grateful to Exploration Directorate of the National Iranian Oil Company (NIOC) for providing the data and permission for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Tajmir Riahi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riahi, Z.T., Sarkarinejad, K., Faghih, A. et al. Integration of remote sensing and geophysical data for structural lineaments analysis in the Rag-e-Sefid oil/gas field and surrounding areas, SW Iran. Geosci J 27, 297–320 (2023). https://doi.org/10.1007/s12303-023-0003-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-023-0003-z

Key words

Navigation