Skip to main content
Log in

Seismo-tectonic and morphological study of the north-east Himalaya

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

The study of the spatial distribution of strain and stress accumulation in a continent-continent convergent system is significant for seismic hazard assessment. The Indian Plate is moving towards the north-east at a pace of 5cm/year, according to GPS velocity vectors. Since the Main Central Thrust (MCT) was active from 23 Ma to 12 Ma, when the Eurasian and Indian Plates collided for the first time, The Main Boundary Thrust (MBT) was formed by continuous collision to the south of the MCT, which continued until 3 Ma. The Main Frontal Thrust (MFT) is newly formed in the Himalayan Orogeny and is still tectonically active. This tectonically active area has been divided into four regions according to the computed ‘b’ value distribution. Regions 2 and 3 represent the inverse relationship between magnitude and frequency distribution. The magnitude range is greater than the frequency in Region 2, while the frequency distribution is greater than the magnitude in Region 3. In an overview of such alteration, two selected watersheds, namely Kameng from R-3 (Region 3) and Dibang from R-2 (Region 2), display the different values of the index of active tectonics (IAT), considering the sub-basins. Here parameters like the basin shape index (Bs), the compactness coefficient (Cc), the form ratio (Rf), the circularity ratio (Rc), the leminscate coefficient (k), the hypsometric integral (HI), the stream gradient index (SL), and the sinuosity index (SI) have been considered to compute the IAT. According to the overall average range of the IAT of the two watersheds, Kameng is more active (2.198) than Dibang (2.272). The VP and VS anomalies at 20 km, 40 km and 60 km indicate that the Kameng watershed is more active than Dibang as the higher range of VP and VS at a depth of 20 km lies near the foredeep section and it is also supported by the location of active sub-basins between the MBT (Main Boundary Thrust) and the MFT (Main Frontal Trust). The active crustal shortening across the southern part of the Kameng River, around the Main Frontal Thrust Décollement Zone, intensifies the plate movement by 10 mm/year along the section of R-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aier, I., Luirei, K., Bhakuni, S., Thong, G.T., and Kothyari, G.C., 2011, Geomorphic evolution of Medziphema intermontane basin and Quaternary deformation in the schuppen belt, Nagaland, NE India. Zeitschrift fur Geomorphologie, 55, 247. https://doi.org/10.1127/0372-8854/2011/0055-0048

    Article  Google Scholar 

  • Anand, A.K. and Pradhan, S.P., 2019, Assessment of active tectonics from geomorphic indices and morphometric parameters in part of Ganga basin. Journal of Mountain Science, 16, 1943–1961.

    Article  Google Scholar 

  • Angelier, J. and Baruah, S., 2009, Seismotectonics in Northeast India: a stress analysis of focal mechanism solutions of earthquakes and its kinematic implications. Geophysical Journal International, 178, 303–326.

    Article  Google Scholar 

  • Arora, B.R., Prajapati, S.K., and Reddy, C., 2014, Geophysical constraints on the seismotectonics of the Sikkim Himalaya. Bulletin of the Seismological Society of America, 104, 2278–2287.

    Article  Google Scholar 

  • Ata, H.A., 2008, A test of the validity of morphometric analysis in determining tectonic activity from aster derived DEMS in the Jordan-Dead Sea transform zone. Ph.D. Thesis, University of Arkansas, Arkansas, 169 p.

    Google Scholar 

  • Azor, A., Keller, E.A., and Yeats, R.S., 2002, Geomorphic indicators of active fold growth: South Mountain-Oak Ridge anticline, Ventura basin, southern California. Geological Society of America Bulletin, 114, 745–753.

    Article  Google Scholar 

  • Bahrami, S., 2013, Analyzing the drainage system anomaly of Zagros basins: implications for active tectonics. Tectonophysics, 608, 914–928.

    Article  Google Scholar 

  • Baruah, M.P., Bezbaruah, D., and Goswami, T., 2020, Active tectonics deduced from geomorphic indices and its implication on economic development of water resources in South-Eastern part of Mikir massif, Assam, India. Geology, Ecology, and Landscapes, 6, 99–112. https://doi.org/10.1080/24749508.2020.1754705

    Article  Google Scholar 

  • Baruah, S. and Hazarika, D., 2008, A GIS based tectonic map of northeastern India. Current Science, 95, 176–177.

    Google Scholar 

  • Bhakuni, S.S., Luirei, K., and Kothyari, G.C., 2013, Neotectonic fault in the middle part of Lesser Himalaya, Arunachal Pradesh: a study based on structural and morphotectonic analyses. Himalayan Geology, 34, 57–64.

    Google Scholar 

  • Biswas, M., Gogoi, M.P., Mondal, B., Thota Sivasankar, T., Mukherjee, S., and Dasgupta, S., 2022, Geomorphic assessment of active tectonics in Jaisalmer basin (Western Rajasthan, India). Geocarto International. https://doi.org/10.1080/10106049.2022.2066726

  • Biswas, M. and Paul, A., 2021, Application of geomorphic indices to address the foreland Himalayan tectonics and landform deformation-Matiali-Chalsa-Baradighi recess, West Bengal, India. Quaternary International, 585, 3–14.

    Article  Google Scholar 

  • Biswas, M., Puniya, M.K., Gogoi, M.P., Dasgupta, S., Mukherjee, S., and Kar, N.R., 2022, Morphotectonic analysis of petroliferous Barmer rift basin (Rajasthan, India). Journal of Earth System Science, 131, 140. https://doi.org/10.1007/s12040-022-01871-8

    Article  Google Scholar 

  • Brunnschweiler, R., 1966, On the geology of the Indoburman ranges (Arakan Coast and Yoma, Chin Hills, Naga Hills). Journal of the Geological Society of Australia, 13, 137–194.

    Article  Google Scholar 

  • Bull, W.B. and McFadden, L.D., 2020, Tectonic geomorphology north and south of the Garlock Fault, California. In: Doehring, D.O. (ed.), Geomorphology in Arid Regions. Routledge, London, p. 115–138. https://doi.org/10.4324/9780429299230-5

    Chapter  Google Scholar 

  • Burgess, W.P., Yin, A., Mo, C.S., Shen, Z.-K., and Kelty, T.K., 2012, Holocene shortening across the Main Frontal Thrust zone in the eastern Himalaya. Earth and Planetary Science Letters, 357, 152–167.

    Article  Google Scholar 

  • Chandra, U., 1978, Seismicity, earthquake mechanisms and tectonics along the Himalayan mountain range and vicinity. Physics of the Earth and Planetary Interiors, 16, 109–131.

    Article  Google Scholar 

  • Chatterjee, R., Nath, S., and Kumar, S.G., 2019, Morphotectonic analysis of the Himalayan frontal Region of Northwest Himalaya in the light of geomorphic signatures of active tectonics. In: Navalgund, R.R., Senthil Kumar, A., and Nandy, S. (eds.), Remote Sensing of Northwest Himalayan Ecosystems. Springer, Singapore, p. 17–35.

    Chapter  Google Scholar 

  • Chattopadhyay, B., Venkataramana, P., Roy, D., Bhattacharya, S., and Ghosh, S., 1983, Geology of Naga Hills Ophiolites. In: Ghose, N. C., Chatterjee, N., and Fareeduddin. (eds.), A Petrographic Atlas of Ophiolite — An Example from the Eastern India-Asia Collision Zone. Springer, New Delhi, p. 25–48. https://doi.org/10.1007/978-81-322-1569-1_3

    Google Scholar 

  • Chen, Y.W., Shyu, J.B.H., and Chang, C.P., 2015, Neotectonic characteristics along the eastern flank of the Central Range in the active Taiwan orogen inferred from fluvial channel morphology. Tectonics, 34, 2249–2270.

    Article  Google Scholar 

  • Chirouze, F., Huyghe, P., van der Beek, P., Chauvel, C., Chakraborty, T., Dupont-Nivet, G., and Bernet, M., 2013, Tectonics, exhumation, and drainage evolution of the eastern Himalaya since 13 Ma from detrital geochemistry and thermochronology, Kameng River Section, Arunachal Pradesh. Geological Society of America Bulletin, 125, 523–538. https://doi.org/10.1130/B30697.1

    Article  Google Scholar 

  • Chorley, R.J., 2019, The drainage basin as the fundamental geomorphic unit. In: Chorley, R.J. (ed.), Water, Earth, and Man: A Synthesis of Hydrology, Geomorphology, and Socio-Economic Geography. Routledge, London, p. 37–59.

    Google Scholar 

  • Choudhury, S. and Datta, A., 1973, Bouguer gravity and its geologic evaluation in the western part of the Bengal Basin and adjoining area, India. Geophysics, 38, 691–700. https://doi.org/10.1190/L1440368

    Article  Google Scholar 

  • Clark, M., Schoenbohm, L., Royden, L., Whipple, K., Burchfiel, B., Zhang, X., Tang, W., Wang, E., and Chen, L., 2004, Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics, 23, 1–20. https://doi.org/10.1029/2002TC00140

    Article  Google Scholar 

  • Cox, R.T., 1994, Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: an example from the Mississippi Embayment. Geological Society of America Bulletin, 106, 571–581.

    Article  Google Scholar 

  • Dasgupta, S., Biswas, M., Mukherjee, S., and Chatterjee, R., 2022, Structural evolution and sediment depositional system along the transform margin-Palar-Pennar basin, Indian east coast. Journal of Petroleum Science and Engineering, 211, 110–155. https://doi.org/10.1016/j.petrol.2022.110155

    Article  Google Scholar 

  • Diehl, T., Singer, J., Hetényi, G., Grujic, D., Clinton, J., Giardini, D., Kissling, E., and Group, G.W., 2017, Seismotectonics of Bhutan: evidence for segmentation of the eastern Himalayas and link to foreland deformation. Earth and Planetary Science Letters, 471, 54–64.

    Article  Google Scholar 

  • Dubey, R., Dar, J.A., and Kothyari, G.C., 2017, Evaluation of relative tectonic perturbations of the Kashmir Basin, Northwest Himalaya, India: an integrated morphological approach. Journal of Asian Earth Sciences, 148, 153–172. https://doi.org/10.1016/j.jseaes.2017.08.032

    Article  Google Scholar 

  • Dumka, R.K., Kotlia, B.S., Kothyari, G.C., Paikrey, J., and Dimri, S., 2018, Detection of high and moderate crustal strain zones in Uttarakhand Himalaya, India. Acta Geodaetica et Geophysica, 53, 503–521. https://doi.org/10.1007/s40328-018-0226-z

    Article  Google Scholar 

  • Flügel, T.J., Eckardt, F.D., and Cotterill, F.P.D., 2015, The present day drainage patterns of the Congo River System and their Neogene evolution. In: de Wit, M.J., Guillocheau, F., and de Wit, M.C.J. (eds.), Geology and Resource Potential of the Congo Basin. Springer, Berlin, p. 315–337.

    Google Scholar 

  • Gogoi, M.P., Gogoi, B., and Mukherjee, S., 2022, Tectonic instability of the petroliferous upper Assam valley (NE India): a geomorphic approach. Journal of Earth System Science, 131, 1–18.

    Article  Google Scholar 

  • Gravelius, H., 1914, Flusskunde. GJ göschen, Berlin, 179 p.

    Book  Google Scholar 

  • Gutenberg, B. and Richter, C.F., 1944, Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185–188.

    Article  Google Scholar 

  • Hack, J.T., 1973, Stream-profile analysis and stream-gradient index. Journal of Research of the U.S. Geological Survey, 1, 421–429.

    Google Scholar 

  • Hare, P.W. and Gardner, T.W., 1985, Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. Tectonic Geomorphology, 4, 75–104.

    Google Scholar 

  • Hassen, M.B., Deffontaines, B., and Turki, M.M., 2014, Recent tectonic activity of the Gafsa fault through morphometric analysis: southern Atlas of Tunisia. Quaternary International, 338, 99–112.

    Article  Google Scholar 

  • Hazarika, P., Kumar, M.R., Srijayanthi, G., Raju, P.S., Rao, N.P., and Srinagesh, D., 2010, Transverse tectonics in the Sikkim Himalaya: evidence from seismicity and focal-mechanism data. Bulletin of the Seismological Society of America, 100, 1816–1822.

    Article  Google Scholar 

  • Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., and Xie, F., 2018, The world stress map database release 2016: crustal stress pattern across scales. Tectonophysics, 744, 484–498.

    Article  Google Scholar 

  • Horton, R.E., 1945, Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56, 275–370.

    Article  Google Scholar 

  • Hysa, A. and Baskaya, F.A.T., 2019, A GIS based method for indexing the broad-leaved forest surfaces by their wildfire ignition probability and wildfire spreading capacity. Modeling Earth Systems and Environment, 5, 71–84.

    Article  Google Scholar 

  • Imoto, M., 1991, Changes in the magnitude—Frequency b-value prior to large (M ≥ 6.0) earthquakes in Japan. Tectonophysics, 193, 311–325.

    Article  Google Scholar 

  • Jade, S., Mukul, M., Gaur, V., Kumar, K., Shrungeshwar, T., Satyal, G., Dumka, R.K., Jagannathan, S., Ananda, M., and Kumar, P.D., 2014, Contemporary deformation in the Kashmir-Himachal, Garhwal and Kumaon Himalaya: significant insights from 1995–2008 GPS time series. Journal of Geodesy, 88, 539–557. https://doi.org/10.1007/s001900-14-0702-3

    Article  Google Scholar 

  • Jade, S., Shrungeshwara, T., Kumar, K., Choudhury, P., Dumka, R.K., and Bhu, H., 2017, India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015. Scientific Reports, 7, 11439. https://doi.org/10.1038/s41598-017-11697-w

    Article  Google Scholar 

  • Jain, A., Dasgupta, S., Bhargava, O., Israil, M., Patel, R., Mukul, M., Parcha, S., Adlakha, V., Agarwal, K., and Singh, P., 2016, Tectonics and evolution of the Himalaya. Proceedings of the Indian National Science Academy, 82, 581–604.

    Article  Google Scholar 

  • Joshi, N., Kothyari, G.C., and Pant, C.C., 2020, Drainage conformation and transient response of river system in thrust segmentation of Northwest Himachal Himalaya, India. Quaternary International, 575–576, 37–50. https://doi.org/10.1016/j.quaint.2020.05.024

    Google Scholar 

  • Kannan, R., Venkateswaran, S., Prabhu, M.V., and Sankar, K., 2018, Drainage morphometric analysis of the Nagavathi watershed, Cauvery river basin in Dharmapuri district, Tamil Nadu, India using SRTM data and GIS. Data in Brief, 19, 2420–2426.

    Article  Google Scholar 

  • Kar, N.R., Mani, D.R.K., Mukherjee, S., Dasgupta, S., Puniya, M.K., and Biswas, M., 2022, Source rock properties and kerogen decomposition kinetics of Eocene shales from petroliferous Barmer basin, western Rajasthan, India. Journal of Natural Gas Science and Engineering. Earth ArXiv (Preprint). https://doi.org/10.31223/X5F05B

  • Kayal, J. and De, R., 1991, Microseismicity and tectonics in northeast India. Bulletin of the Seismological Society of America, 81, 131–138.

    Article  Google Scholar 

  • Kent, W.N., Hickman, R.G., and Dasgupta, U., 2002, Application of a ramp/flat-fault model to interpretation of the Naga thrust and possible implications for petroleum exploration along the Naga thrust front. American Association of Petroleum Geologists Bulletin, 86, 2023–2045.

    Google Scholar 

  • Khattri, K. and Tyagi, A., 1983, The transverse tectonic features in the Himalaya. Tectonophysics, 96, 19–29.

    Article  Google Scholar 

  • Khayingshing, L., Bhakuni, S.S., Pradeep, S., and Suresh, N., 2012, Late Pleistocene-Holocene tectonic activities in the frontal part of NE Himalaya between Siang and Dibang river valleys, Arunachal Pradesh, India. Zeitschrift für Geomorphologie, 56, 477–493.

    Article  Google Scholar 

  • Kothyari, G.C., 2014, Morphometric analysis of tectonically active Pindar and Saryu River basins: central Kumaun Himalaya. Zeitschrift für Geomorphologie, 59, 421–442. https://doi.org/10.1127/zfg/2014/0162

    Article  Google Scholar 

  • Kothyari, G.C. and Luirei, K., 2016, Late Quaternary tectonic landforms and fluvial aggradation in the Saryu River valley: central Kumaun Himalaya. Geomorphology, 268, 159–176. https://doi.org/10.1016/j.geomorph.2016.06.010

    Article  Google Scholar 

  • Kothyari, G.C., Rastogi, B., Morthekai, P., and Dumka, R.K., 2016, Landform development in a zone of active Gedi Fault, Eastern Kachchh rift basin, India. Tectonophysics, 670, 115–126. https://doi.org/10.1016/j.tecto.2015.12.027

    Article  Google Scholar 

  • Kothyari, G.C., Rastogi, B., Morthekai, P., Dumka, R.K., and Kandregula, R.S., 2016, Active segmentation assessment of the tectonically active South Wagad fault in Kachchh, western Peninsular India. Geomorphology, 253, 491–507. https://doi.org/10.1016/j.geomorph.2015.10.029

    Article  Google Scholar 

  • Kothyari, G.C., Shirvalkar, P., Kandregula, R.S., Rawat, Y., Dumka, R.K., and Joshi, N., 2019, Holocene tectonic activity along Kachchh Mainland Fault: impact on late mature Harappan civilization, Kachchh, western India. Quaternary International, 507, 274–287.

    Article  Google Scholar 

  • Kothyari, G.C., Singh, A.P., Mishra, S., Kandregula, R.S., Chaudhary, I., and Chauhan, G., 2018, Evolution of drainage in response to brittle-ductile dynamics and surface processes in Kachchh Rift Basin, western India. In: Sharkov, E.V. (ed.), Tectonics — Problems of Regional Settings. IntechOpen, p. 131–158. https://doi.org/10.5772/intechopen.73653

  • Krishnan, M.S., 1960, Geology of India and Burma (4th edition). Higginbothams, Madras, 604 p.

    Google Scholar 

  • Kumar, A., Mitra, S., and Suresh, G., 2015, Seismotectonics of the eastern Himalayan and Indo-Burman plate boundary systems. Tectonics, 34, 2279–2295.

    Article  Google Scholar 

  • Kumar, S. and Sharma, N., 2019, The seismicity of central and northeast Himalayan region. Contributions to Geophysics and Geodesy, 49, 265–281. https://doi.org/10.2478/congeo-2019-0014

    Article  Google Scholar 

  • Lahiri, S.K. and Sinha, R., 2012, Tectonic controls on the morphodynamics of the Brahmaputra River system in the upper Assam valley, India. Geomorphology, 169, 74–85.

    Article  Google Scholar 

  • Litchfield, N.J., Campbell, J.K., and Nicol, A., 2003, Recognition of active reverse faults and folds in North Canterbury, New Zealand, using structural mapping and geomorphic analysis. New Zealand Journal of Geology and Geophysics, 46, 563–579.

    Article  Google Scholar 

  • Luirei, K., Kothyari, G.C., Dumka, R.K., and Bhakuni, S.S., 2022, Assessment of the tectonically induced Quaternary landforms and active deformation in the area between Main Boundary Thrust and Himalayan Frontal Thrust, south of the Siang Antiform, Arunachal Himalaya, India. Geological Journal, 57, 557–574. https://doi.org/10.1002/gj.4256

    Article  Google Scholar 

  • Luirei, K., Lokho, K., and Kothyari, G.C., 2018, Neotectonic activity along the Churachandpur-Mao Fault in and around Karong, Manipur, India: based on morphotectonics and morphometric analyses. Arabian Journal of Geosciences, 11, 1–16. https://doi.org/10.1007/s12517-018-3902-y

    Article  Google Scholar 

  • Luirei, K., Lokho, K., Longkumer, L., Kothyari, G.C., Rai, R., Rawat, I.S., and Nakhro, D., 2021, Morphotectonic evolution of the Quaternary landforms in the Yangui River basin in the Indo-Myanmar Range. Journal of Asian Earth Sciences, 218, 104877. https://doi.org/10.1016/j.jseaes.2021.104877

    Article  Google Scholar 

  • Mahmood, S.A. and Gloaguen, R., 2012, Appraisal of active tectonics in Hindu Kush: insights from DEM derived geomorphic indices and drainage analysis. Geoscience Frontiers, 3, 407–428.

    Article  Google Scholar 

  • Main, I. and Meredith, P., 1989, Classification of earthquake precursors from a fracture mechanics model. Tectonophysics, 167, 273–283.

    Article  Google Scholar 

  • Malik, M.S. and Shukla, J., 2018, A GIS-based morphometric analysis of Kandaihimmat watershed, Hoshangabad district, MP India. Indian Journal of Geo-Marine Sciences, 47, 1980–1985.

    Google Scholar 

  • McArthur, D.S. and Ehrlich, R., 1977, An efficiency evaluation of four drainage basin shape ratios. The Professional Geographer, 29, 290–295.

    Article  Google Scholar 

  • Miller, V.C., 1953, A quantitative geomorphic study of drainage basin characteristics in Clinch Mountain Area Virginia and Tennessee. Technical Report No. 3, Columbia University, New York, 30 p.

    Google Scholar 

  • Misra, A., Agarwal, K., Kothyari, G.C., Talukdar, R., and Joshi, G., 2020, Quantitative geomorphic approach for identifying active deformation in the foreland region of central Indo-Nepal Himalaya. Geotectonics, 54, 543–562. https://doi.org/10.1134/S0016852120040093

    Article  Google Scholar 

  • Misra, D., 2007, Geomorphic features along the active faults in the Lohit and Dibang Valleys, Eastern Arunachal Pradesh, India. Zeitschrift für Geomorphologie, 51, 327–336. https://doi.org/10.1127/0372-8854/2007/0051-0327

    Article  Google Scholar 

  • Misra, D., 2009, River response to continuing movements along the active faults in the Siang Valley, North-Eastern Himalaya, India. Zeitschrift für Geomorphologie, 53, 455–468. https://doi.org/10.1127/0372-8854/2009/0053-0455

    Article  Google Scholar 

  • Moiya, J.N., Luirei, K., Longkumer, L., Kothyari, G.C., and Thong, G.T., 2019, Late Quaternary deformation in parts of the Belt of Schuppen of Dimapur and Peren districts, Nagaland, NE India. Geological Journal, 55, 457–476. https://doi.org/10.1002/gj.3413

    Article  Google Scholar 

  • Mukhopadhyay, B. and Dasgupta, S., 2015, Earthquake swarms near eastern Himalayan Syntaxis along Jiali Fault in Tibet: a seismotectonic appraisal. Geoscience Frontiers, 6, 715–722.

    Article  Google Scholar 

  • Mundetia, N., Sharma, D., and Dubey, S.K., 2018, Morphometric assessment and sub-watershed prioritization of Khari River basin in semi-arid region of Rajasthan, India. Arabian Journal of Geosciences, 11, 1–18.

    Article  Google Scholar 

  • Nandy, D., 2017, Geodynamics of Northeastern India and the Adjoining Region. Scientific Book Centre, Guwahati, 272 p.

    Google Scholar 

  • Nath, S.K., Vyas, M., Pal, I., and Sengupta, P., 2005, A seismic hazard scenario in the Sikkim Himalaya from seismotectonics, spectral amplification, source parameterization, and spectral attenuation laws using strong motion seismometry. Journal of Geophysical Research: Solid Earth, 110. https://doi.org/10.1029/2004JB003199

  • Ningthoujam, P., Dubey, C., Lolee, L., Shukla, D., Naorem, S., and Singh, S., 2015, Tectonic studies and crustal shortening across Easternmost Arunachal Himalaya. Journal of Asian Earth Sciences, 111, 339–349.

    Article  Google Scholar 

  • Pandey, M., Tandukar, R., Avouac, J., Lave, J., and Massot, J., 1995, Interseismic strain accumulation on the Himalayan crustal ramp, Nepal. Geophysical Research Letters, 22, 751–754.

    Article  Google Scholar 

  • Panthi, A., Singh, H., and Shanker, D., 2013, Revisiting state of stress and geodynamic processes in Northeast India Himalaya and its adjoining region. Geosciences, 3, 143–152.

    Google Scholar 

  • Paul, A. and Biswas, M., 2019, Changes in river bed terrain and its impact on flood propagation — a case study of River Jayanti, West Bengal, India. Geomatics, Natural Hazards and Risk, 10, 1928–1947.

    Article  Google Scholar 

  • Pérez-Peña, J.V., Azor, A., Azañón, J.M., and Keller, E.A., 2010, Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): insights from geomorphic indexes and drainage pattern analysis. Geomorphology, 119, 74–87.

    Article  Google Scholar 

  • Pike, R.J. and Wilson, S.E., 1971, Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geological Society of America Bulletin, 82, 1079–1084.

    Article  Google Scholar 

  • Prasad, S. and Singh, C., 2015, Evolution of b-values before large earthquakes of mb ≥ 6.0 in the Andaman region. Geologica Acta, 13, 205–210. https://doi.org/10.1344/GeologicaActa2015.13.3.3

    Google Scholar 

  • Pudi, R., Roy, P., Martha, T.R., Kumar, K.V., and Rao, P.R., 2018, Spatial potential analysis of earthquakes in the western Himalayas using b-value and thrust association. Journal of the Geological Society of India, 91, 664–670.

    Article  Google Scholar 

  • Raj, R., 2012, Active tectonics of NE Gujarat (India) by morphometric and morphostructural studies of Vatrak River basin. Journal of Asian Earth Sciences, 50, 66–78.

    Article  Google Scholar 

  • Ramírez-Herrera, M.T., 1998, Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. Earth Surface Processes and Landforms, 23, 317–332.

    Article  Google Scholar 

  • Rao, M.R., 1973, The subsurface geology of the Indo-Gangetic plains. Journal of Geological Society of India, 14, 217–242.

    Google Scholar 

  • Raoof, J., Mukhopadhyay, S., Koulakov, I., and Kayal, J., 2017, 3-D seismic tomography of the lithosphere and its geodynamic implications beneath the northeast India region. Tectonics, 36, 962–980.

    Article  Google Scholar 

  • Sassolas-Serrayet, T., Cattin, R., and Ferry, M., 2018, The shape of watersheds. Nature Communications, 9, 1–8.

    Article  Google Scholar 

  • Schoenbohm, L., Whipple, K., Burchfiel, B., and Chen, L., 2004, Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan Province, China. Geological Society of America Bulletin, 116, 895–909.

    Article  Google Scholar 

  • Schumm, S.A., 1956, Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67, 597–646.

    Article  Google Scholar 

  • Sharma, G. and Mohanty, S., 2018, Morphotectonic analysis and GNSS observations for assessment of relative tectonic activity in Alaknanda basin of Garhwal Himalaya, India. Geomorphology, 301, 108–120.

    Article  Google Scholar 

  • Sharma, S. and Sarma, J.N., 2017, Application of drainage basin morphotectonic analysis for assessment of tectonic activities over two regional structures of the northeast India. Journal of the Geological Society of India, 89, 271–280.

    Article  Google Scholar 

  • Shukla, D., Dubey, C., Ningreichon, A., Singh, R., Mishra, B., and Singh, S., 2014, GIS-based morpho-tectonic studies of Alaknanda river basin: a precursor for hazard zonation. Natural Hazards, 71, 1433–1452.

    Article  Google Scholar 

  • Silva, P.G., Goy, J.L., Zazo, C., and Bardajı, T., 2003, Fault-generated mountain fronts in southeast Spain: geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50, 203–225.

    Article  Google Scholar 

  • Singh, C. and Singh, S., 2015, Imaging b-value variation beneath the Pamir-Hindu Kush region. Bulletin of the Seismological Society of America, 105, 808–815.

    Article  Google Scholar 

  • Singh, M.D. and Kumar, A., 2013, Active deformation measurements at Mishmi complex of Eastern Himalayan Syntaxis. International Journal of Geosciences, 4, 746–758.

    Article  Google Scholar 

  • Sreejith, K., Sunil, P., Agrawal, R., Saji, A.P., Rajawat, A., and Ramesh, D., 2018, Audit of stored strain energy and extent of future earthquake rupture in central Himalaya. Scientific Reports, 8, 16697. https://doi.org/10.1038/s41598-018-35025-y

    Article  Google Scholar 

  • Sreejith, K., Sunil, P., Agrawal, R., Saji, A.P., Ramesh, D., and Rajawat, A., 2016, Coseismic and early postseismic deformation due to the 25 April 2015, Mw 7.8 Gorkha, Nepal, earthquake from InSAR and GPS measurements. Geophysical Research Letters, 43, 3160–3168.

    Article  Google Scholar 

  • Srivastava, P. and Misra, D.K., 2008, Morpho-sedimentary records of active tectonics at the Kameng river exit, NE Himalaya. Geomorphology, 96, 187–198.

    Article  Google Scholar 

  • Strahler, A.N., 1952, Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63, 1117–1142.

    Article  Google Scholar 

  • Strahler, A.N., 1964, Quantitative geomorphology of drainage basins and channel networks. In: Chow, V.T. (ed.), Handbook of Applied Hydrology. McGraw Hill, New York, p. 439–476.

    Google Scholar 

  • Sukhija, B., Rao, M., Reddy, D., Nagabhushanam, P., Hussain, S., Chadha, R., and Gupta, H., 1999, Paleoliquefaction evidence and periodicity of large prehistoric earthquakes in Shillong Plateau, India. Earth and Planetary Science Letters, 167, 269–282.

    Article  Google Scholar 

  • Supriya, S., 1966, Geological and geophysical studies in western part of Bengal basin, India. American Association of Petroleum Geologists Bulletin, 50, 1001–1017.

    Google Scholar 

  • Taloor, A.K., Joshi, L.M., Kotlia, B.S., Alam, A., Kothyari, G.C., Kandregula, R.S., Singh, A.K., and Dumka, R.K., 2021, Tectonic imprints of landscape evolution in the Bhilangana and Mandakini basin, Garhwal Himalaya, India: a geospatial approach. Quaternary International, 575, 21–36. https://doi.org/10.1016/j.quaint.2020.07.021

    Article  Google Scholar 

  • Utsu, T., 1999, Representation and analysis of the earthquake size distribution: a historical review and some new approaches. In: Wyss, M., Shimazaki, K., and Ito, A. (eds.), Seismicity Patterns, Their Statistical Significance and Physical Meaning. Birkhäuser, Basel, p. 509–535.

    Chapter  Google Scholar 

  • Valdia, K.S., 1976, Himalayan transverse fault and their parallelism with subsurface structures of north its aftershocks Indian plane. Tectonophysics, 32, 353–386.

    Article  Google Scholar 

  • Verma, R., 1991, Seismicity of the Himalaya and the northeast India, and nature of continent-continent collision. Physics and Chemistry of the Earth, 18, 345–370.

    Article  Google Scholar 

  • Verma, R., Mukhopadhyay, M., and Bhanja, A., 1980, Seismotectonics of the Hindukush and Baluchistan arc. Tectonophysics, 66, 301–322.

    Article  Google Scholar 

  • Verma, P. and Tandon, S., 1976, Geological observations in parts of Kameng district, Arunachal Pradesh (NEFA). Himalayan Geology, 6, 259–286.

    Google Scholar 

  • Viveen, W., Van Balen, R., Schoorl, J., Veldkamp, A., Temme, A., and Vidal-Romani, J., 2012, Assessment of recent tectonic activity on the NW Iberian Atlantic Margin by means of geomorphic indices and field studies of the Lower Miño River terraces. Tectonophysics, 544, 13–30.

    Article  Google Scholar 

  • Wołosiewicz, B., 2016, Morphotectonic control of the Białka drainage basin (central Carpathians): insights from DEM and morphometric analysis. Contemporary Trends in Geoscience, 5, 61–82. https://doi.org/10.1515/ctg-2016-0005

    Article  Google Scholar 

  • Wyss, M., 1973, Towards a physical understanding of the earthquake frequency distribution. Geophysical Journal International, 31, 341–359.

    Article  Google Scholar 

  • Wyss, M., Shimazaki, K., and Wiemer, S., 1997, Mapping active magma chambers by b values beneath the off-Ito volcano, Japan. Journal of Geophysical Research: Solid Earth, 102, 20413–20422.

    Article  Google Scholar 

  • Yadav, R. and Tiwari, V., 2018, Numerical simulation of present day tectonic stress across the Indian subcontinent. International Journal of Earth Sciences, 107, 2449–2462.

    Article  Google Scholar 

  • Yin, A., Dubey, C., Kelty, T., Gehrels, G., Chou, C., Grove, M., and Lovera, O., 2006, Structural evolution of the Arunachal Himalaya and implications for asymmetric development of the Himalayan orogen. Current Science, 90, 195–206.

    Google Scholar 

  • Yin, A., Dubey, C., Kelty, T., Webb, A., Harrison, T., Chou, C., and Célérier, J., 2010, Geologic correlation of the Himalayan orogen and Indian craton: Part 2. Structural geology, geochronology, and tectonic evolution of the Eastern Himalaya. The Geological Society of America Bulletin, 122, 360–395. https://doi.org/10.1130/B2646L1

    Article  Google Scholar 

  • Zhao, W., Nelson, K., Che, J., Quo, J., Lu, D., Wu, C., and Liu, X., 1993, Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366, 557–559.

    Article  Google Scholar 

  • Zhao, Y., Grujic, D., Baruah, S., Drukpa, D., Elkadi, J., Hetényi, G., King, G.E., Mildon, Z.K., Nepal, N., and Welte, C., 2021, Paleoseismological findings at a new trench indicate the 1714 M8.1 earthquake ruptured the Main Frontal Thrust over all the Bhutan Himalaya. Frontiers in Earth Science, 9, 119–133. https://doi.org/10.3389/feart.2021.689457

    Article  Google Scholar 

  • Ziyad, E.R., 2014, Relationship between tectonic activity, fluvial system and river morphology in the Dohuk catchment, Iraqi Kurdistan. Géomorphologie: Relief, Processus, Environnement, 20, 91–100.

    Article  Google Scholar 

Download references

Acknowledgments

The authors convey a token of thanks to the Geography Department, Presidency University, Kolkata. We would like to convey our hearty thanks to the editor, associate editor and reviewers of the journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mery Biswas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Biswas, M. Seismo-tectonic and morphological study of the north-east Himalaya. Geosci J 27, 1–21 (2023). https://doi.org/10.1007/s12303-022-0016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-022-0016-z

Key words

Navigation