Skip to main content
Log in

Geochemical signatures of organic matter associated with gas generation in the Pohang Basin, South Korea

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

We investigated the source, maturity, and biodegradation of organic matter (OM) deposited at two core sites (PSG-02 and PSG-03) of the Pohang Basin by analyzing stable isotopic compositions of bulk organic matter and specific lipid molecules (n-alkanes). In contrast to the lack of substantial variations in bulk carbon isotopic compositions along core depths, a homologous series of saturated alkanes (C16 to C35) showed distinct carbon chain-length distribution between both core sites, having predominance in C20 to C25 for PSG-02 and C29 for PSG-03. Such variation may reflect the different geochemical properties of the deposited OM involved in gas generation. In this regard, various n-alkane indices, for example, carbon preference index (CPI), terrestrial/aquatic ratio (TAR), average chain length (ACL), natural n-alkanes ratio (NAR), percentage of aquatic plants (Pmar-aq), and pristane/phytane (Pr/Ph), were applied to understand the OM origins and depositional environments at both core sites. The contribution of thermally petroleum-derived OM is predominant in PSG-02, as shown by the low values of CPI (< 1) and NAR (< 0.6). Conversely, high values of ACL (> 29), TAR (> 2), low values of Pmar-aq (< 0.4) and Pr/Ph (∼1) may be associated with mixed contributions of marine and terrestrial OM sources in PSG-03. In addition, Pr/Ph ratios suggest that sedimentary diagenesis conditions such as maturity and redox condition should be different between both core sites. Our results highlight useful information regarding the geochemical properties of OM involved in gas generation in the Pohang Basin. This will help us better define accumulated gas systems and reduce the risk associated with future exploration efforts in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adegoke, A.K., Sarki Yandoka, B.M., Abdullah, W.H., and Akaegbobi, I.M., 2014, Molecular geochemical evaluation of Late Cretaceous sediments from Chad (Bornu) Basin, NE Nigeria: implications for paleodepositional conditions, source input and thermal maturation. Arabian Journal of Geosciences, 8, 1591–1609.

    Article  Google Scholar 

  • Adeniji, A., Okoh, O., and Okoh, A., 2017, Petroleum hydrocarbon profiles of water and sediment of Algoa Bay, Eastern Cape, South Africa. International Journal of Environmental Research and Public Health, 14, 1–21.

    Article  Google Scholar 

  • Ahmed, O.E., Mahmoud, S.A., and Mousa, A.E.M., 2015, Aliphatic and poly-aromatic hydrocarbons pollution at the drainage basin of Suez Oil Refinery Company. Current Science International, 4, 27–44.

    Google Scholar 

  • Akinlua, A. and Smith, R.M., 2009, Application of superheated water extraction in geochemical evaluation of source rocks. Energy and Fuels, 23, 6020–6025.

    Article  Google Scholar 

  • Bi, X., Sheng, G., Liu, X., Li, C., and Fu, J., 2005, Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes. Organic Geochemistry, 36, 1405–1417.

    Article  Google Scholar 

  • Bourbonniere, R.A. and Meyers, P.A., 1996, Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnology and Oceanography, 41, 352–359.

    Article  Google Scholar 

  • Bray, E.E. and Evans, E.D., 1961, Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta, 22, 2–15.

    Article  Google Scholar 

  • Chandra, K., Mishra, C.S., Samanta, U., Gupta, A., and Mehrotra, K.L., 1994, Correlation of different maturity parameters in the Ahmedabad-Mehsana block of the Cambay basin. Organic Geochemistry, 21, 313–321.

    Article  Google Scholar 

  • Charriau, A., Bodineau, L., Ouddane, B., and Fischer, J.C., 2009, Polycyclic aromatic hydrocarbons and n-alkanes in sediments of the Upper Scheldt River Basin: contamination levels and source apportionment. Journal of Environmental Monitoring, 11, 1086–1093.

    Article  Google Scholar 

  • Choi, J., Kang, N.K., Hwang, G.W., and Lee, D.H., 2021, Geochemical characteristics and origins of hydrocarbon gases in the shallow gas field located in the Pohang Basin, Korea. Geosciences Journal. https://doi.org/10.1007/s12303-021-0035-1

  • Chough, S.K., Hwang, I.G., and Choe, M.Y., 1990, The Miocene Doumsan fan-delta, southeast Korea: a composite fan-delta system in back-arc margin. Journal of Sedimentary Research, 60, 445–455.

    Google Scholar 

  • Cranwell, P.A., 1973, Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biology, 3, 259–265.

    Article  Google Scholar 

  • Cranwell, P.A., Eglinton, G., and Robinson, N., 1987, Lipids of aquatic organisms as potential contributors to lacustrine sediments—II. Organic Geochemistry, 11, 513–527.

    Article  Google Scholar 

  • de Abreu-Mota, M.A., de Moura Barboza, C.A., Bícego, M.C., and Martins, C.C., 2014, Sedimentary biomarkers along a contamination gradient in a human-impacted sub-estuary in Southern Brazil: a multi-parameter approach based on spatial and seasonal variability. Chemosphere, 103, 156–163.

    Article  Google Scholar 

  • Deines, P., 1980, The isotopic composition of reduced organic carbon. In: Fritz, P. and Fontes, J.Ch. (eds.), Handbook of Environmental Geochemistry, Volume 1. The Terrestrial Environment, A. Elsevier, Amsterdam, p. 329–406. https://doi.org/10.1016/B978-0-444-41780-0.50015-8

    Chapter  Google Scholar 

  • Didyk, B.M., Simoneit, B.R.T., Brassell, S.C., and Eglinton, G., 1978, Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272, 216–222.

    Article  Google Scholar 

  • Eglinton, G. and Hamilton, R.J., 1967, Leaf epicuticular waxes. Science, 156, 1322–1335.

    Article  Google Scholar 

  • Fang, J., Wu, F., Xiong, Y., Li, F., Du, X., An, D., and Wang, L., 2014, Source characterization of sedimentary organic matter using molecular and stable carbon isotopic composition of n-alkanes and fatty acids in sediment core from Lake Dianchi, China. Science of the Total Environment, 473–474, 410–421.

    Article  Google Scholar 

  • Farhaduzzaman, M., Abdullah, W.H., Islam, M.A., and Pearson, M.J., 2012, Source rock potential of organic-rich shales in the Tertiary Bhuban and Boka Bil formations, Bengal basin, Bangladesh. Journal of Petroleum Geology, 35, 357–375.

    Article  Google Scholar 

  • Ficken, K.J., Li, B., Swain, D.L., and Eglinton, G., 2000, An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31, 745–749.

    Article  Google Scholar 

  • Han, J. and Calvin, M., 1969, Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. Proceedings of the National Academy of Sciences, 64, 436–443.

    Article  Google Scholar 

  • Hwang, I.G., 1993, Fan-delta systems in the Pohang Basin (Miocene), SE Korea. Ph.D. Thesis, Seoul National University, Seoul, 923 p.

    Google Scholar 

  • Hwang, I.G., Chough, S.K., Hong, S.W., and Choe, M.Y., 1995, Controls and evolution of fan delta systems in the Miocene Pohang Basin, SE Korea. Sedimentary Geology, 98, 147–179.

    Article  Google Scholar 

  • Jasper, J.P. and Gagosian, R.B., 1990, The sources and deposition of organic matter in the Late Quaternary Pigmy Basin, Gulf of Mexico. Geochimica et Cosmochimica Acta, 54, 1117–1132.

    Article  Google Scholar 

  • Jolivet, L., Tamaki, K., and Fournier, M., 1994, Japan Sea, opening history and mechanism: a synthesis. Journal of Geophysical Research: Solid Earth, 99, 22237–22259.

    Article  Google Scholar 

  • KIGAM 2021, Development of exploration technique and application method for marginal shallow gas field. Research report, NP2018-003-2021, Korea Institute of Geoscience and Mineral Resources, Daejeon, p. 100.

  • Kim, B.K., 1965, The stratigraphic and paleontologic studies on the Tertiary (Miocene) of the Pohang area, Korea. Seoul University Journal Science and Technology Series, 15, 32–121.

    Google Scholar 

  • Kim, H., Park, C., Park, M.H., and Song, Y., 2019, Diagenetic study on the Neogene sedimentary basin as paleoenvironmental proxy data for an offshore CO2 storage project in Pohang Basin, South Korea. Marine Geology, 416, 105977.

    Article  Google Scholar 

  • Keeling, C.D., Whorf, T.P., Wahlen, M., and van der Plichtt, J., 1995, Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature, 375, 666–670.

    Article  Google Scholar 

  • Klein, D.A., Flores, R.M., Venot, C., Gabbert, K., Schmidt, R., Stricker, G.D., Pruden, A., and Mandernack, K., 2008, Molecular sequences derived from Paleocene Fort Union Formation coals vs. associated produced waters: implications for CBM regeneration. International Journal of Coal Geology, 76, 3–13.

    Article  Google Scholar 

  • Lee, Y., Kwak, Y.H., Yun, H.S., Choeng, T.J., Oh, J.H., Kim, H., and Kang, M., 1997, Petroleum geochemistry of organic matter from the core samples in the Tertiary Pohang Basin. The Korean Journal of Petroleum Geology, 5, 48–58.

    Google Scholar 

  • Lee, J., Hwang, J., Son, M., Son, B.S., Oh, J., and Lee, H., 2017, Mineral compositions and distribution in the drilling cores from the Miocene Pohang Basin, Korea. Journal of the Mineralogical Society of Korea, 30, 113–126.

    Article  Google Scholar 

  • Lee, D.H., Kim, J.H., Lee, Y.M., Stadnitskaia, A., Jin, Y.K., Niemann, H., Kim, Y.G., and Shin, K.H., 2018, Biogeochemical evidence of anaerobic methane oxidation on active submarine mud volcanoes on the continental slope of the Canadian Beaufort Sea. Biogeosciences, 15, 7419–7433.

    Article  Google Scholar 

  • Loucks, R., Reed, R., Ruppel, S., and Jarvie, D., 2009, Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. Journal of Sedimentary Research, 79, 848–861.

    Article  Google Scholar 

  • Lü, X. and Zhai, S., 2006, Distributions and sources of organic biomarkers in surface sediments from the Changjiang (Yangtze River) Estuary, China. Continental Shelf Research, 26, 1–14.

    Article  Google Scholar 

  • Mazurek, M.A. and Simoneit, B., 1984, Characterization of biogenic and petroleum-derived organic matter in aerosols over remote, rural and urban areas. In: Keith, L.H. (ed.), Identification and Analysis of Organic Pollutants in Air. Butterworth, Boston, p. 353–370.

    Google Scholar 

  • Mead, R., Xu, Y., Chong, J., and Jaffé, R., 2005, Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes. Organic Geochemistry, 36, 363–370.

    Article  Google Scholar 

  • Mille, G., Asia, L., Guiliano, M., Malleret, L., and Doumenq, P., 2007, Hydrocarbons in coastal sediments from the Mediterranean Sea (Gulf of Fos area, France). Marine Pollution Bulletin, 54, 566–575.

    Article  Google Scholar 

  • Milliken, K.L., Rudnicki, M., Awwiller, D.N., and Zhang, T., 2013, Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania. American Association of Petroleum Geologists Bulletin, 97, 177–200.

    Article  Google Scholar 

  • Meyers, P.A. and Ishiwatari, R., 1993, Lacustrine organic geochemistry—an overview of indicators of organic-matter sources and diagenesis in lake-sediments. Organic Geochemistry, 20, 867–900.

    Article  Google Scholar 

  • Meyers, P., 2003, Application of organic geochemistry to paleolimnological reconstruction: a summary of examples from the Laurention Great Lakes. Organic Geochemistry, 34, 261–289.

    Article  Google Scholar 

  • Nelson, C.S. and Lawrence, M.F., 1984, Methane-derived high-Mg calcite submarine cement in Holocene nodules from the Fraser Delta, British Columbia, Canada. Sedimentology, 31, 645–654.

    Article  Google Scholar 

  • Noh, J.H. and Woo, K.S., 1997, Occurrence, mineral facies, and formation of carbonate concretion from the Yeonil Group. Journal of the Geological Society of Korea, 33, 210–219.

    Google Scholar 

  • Ortiz, J.E., Moreno, L., Torres, T., Vegas, J., Ruiz-Zapata, B., García-Cortés, A., Galan, L., and Pérez-González, A., 2013, A 220 ka palaeoenvironmental reconstruction of the Fuentillejo maar lake record (central Spain) using biomarker analysis. Organic Geochemistry, 55, 85–97.

    Article  Google Scholar 

  • Otofuji, Y., Matsuda, T., and Nohda, S., 1985, Opening mode of the Japan Sea inferred from the paleomagnetism. Nature 317, 603–604.

    Article  Google Scholar 

  • Pang, X., Zhao, W., Su, A., Zhang, S., Li, M., Dang, Y., Xu, F., Zhou, R., Zhang, D., Xu, Z., Guan, Z., Chen, J., and Li, S., 2005, Geochemistry and origin of the giant Quaternary shallow gas accumulations in the eastern Qaidam Basin, NW China. Organic Geochemistry, 36, 1636–1649.

    Article  Google Scholar 

  • Peters, K.E. and Moldowan, J.M., 1993, The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice-Hall, Englewood Cliffs, 363 p.

    Google Scholar 

  • Peters, K.E., Walters, C.C., and Moldowan, J.M., 2005, The Biomarker Guide. Volume 2: Biomarkers and Isotopes in Petroleum Systems and Earth History. Cambridge University Press, Cambridge, 1132 p.

    Google Scholar 

  • Pinet, N., Duchesne, M., Lavoie, D., Bolduc, A., and Long, B., 2008, Surface and subsurface signatures of gas seepage in the St. Lawrence Estuary (Canada): significance to hydrocarbon exploration. Marine and Petroleum Geology, 25, 271–288.

    Article  Google Scholar 

  • Pommer, M. and Milliken, K., 2015, Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas. The American Association of Petroleum Geologists Bulletin, 99, 1713–1744.

    Article  Google Scholar 

  • Poynter, J. and Eglinton, G., 1990, Molecular composition of three sediments from Hole 717C: the Bengal Fan. In: Cochran, J.R. and Stow, D.A.V. et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, Volume 116. Texas A&M University, College Station, p. 155–161. https://doi.org/10.2973/odp.proc.sr.116.151.1990

    Google Scholar 

  • Raiswell, R., Bottrell, S.H., Dean, S.P., Marshall, J.D., and Carr, A., 2002, Isotopic constraints on growth conditions of multiphase calcite-pyrite-barite concretions in Carboniferous mudstones. Sedimentology, 49, 237–254.

    Article  Google Scholar 

  • Rommerskirchen, F., Plader, A., Eglinton, G., Chikaraishi, Y., and Rullkötter, J., 2006, Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes. Organic Geochemistry, 37, 1303–1332.

    Article  Google Scholar 

  • Sakari, M., Ting, L.S., Houng, L.Y., Lim, S.K., Tahir, R., Adnan, F.A.F., Yi, A.L., Soon, Z.Y., Hsia, B.S., and Shar, M.D., 2012, Urban effluent discharge into rivers; a forensic chemistry approach to evaluate the environmental deterioration. World Applied Sciences Journal, 20, 1227–1235.

    Google Scholar 

  • Schneider, F., Dubille, M., and Montadert, L., 2016, Modeling of microbial gas generation: application to the eastern Mediterranean “biogenic play.” Geologica Acta, 14, 403–417.

    Google Scholar 

  • Sikes, E.L., Uhle, M.E., Nodder, S.D., and Howard, M.E., 2009, Sources of organic matter in a coastal marine environment: evidence from n-alkanes and their δ13C distributions in the Hauraki Gulf, New Zealand. Marine Chemistry, 113, 149–163.

    Article  Google Scholar 

  • Silliman, J.E., Meyers, P.A., and Bourbonniere, R.A., 1996, Record of postglacial organic matter delivery and burial in sediments of Lake Ontario. Organic Geochemistry, 24, 463–472.

    Article  Google Scholar 

  • Sohn, Y.K. and Son, M., 2004, Synrift stratigraphic geometry in a transfer zone coarse-grained delta complex, Miocene Pohang Basin, SE Korea. Sedimentology, 51, 1387–1408.

    Article  Google Scholar 

  • Sohn, Y.K., Rhee, C.W., and Shon, H., 2001, Revised stratigraphy and reinterpretation of the Miocene Pohang basinfill, SE Korea: sequence development in response to tectonism and eustasy in a back-arc basin margin. Sedimentary Geology, 143, 265–285.

    Article  Google Scholar 

  • Son, B.-K., 2011, Mineral temperatures of the sedimentary basins for petroleum resources exploration, Korea. Journal of Mineralogical Society of Korea, 24, 165–178.

    Article  Google Scholar 

  • Son, M., Song, C.W., Kim, M.-C., Cheon, Y., Cho, H., and Sohn, Y. K., 2015, Miocene tectonic evolution of the basins and fault systems, SE Korea: dextral, simple shear during the East Sea (Sea of Japan) opening. Journal of the Geological Society, 172, 664–680.

    Article  Google Scholar 

  • Strapoć, D., Mastalerz, M., Dawson, K., Macalady, J., Callaghan, A.V., Wawrik, B., Turich, C., and Ashby, M., 2011, Biogeochemistry of microbial coal-bed methane. Annual Review of Earth and Planetary Sciences, 39, 617–656.

    Article  Google Scholar 

  • Tareq, S.M., Tanoue, E., Tsuji, H., Tanaka, N., and Ohta, K., 2005, Hydrocarbon and elemental carbon signatures in a tropical wetland: biogeochemical evidence of forest fire and vegetation changes. Chemosphere, 59, 1655–1665.

    Article  Google Scholar 

  • Tatsumi, Y., Maruyama, S., and Nohda, S., 1990, Mechanism of backarc opening in the Japan Sea: role of asthenospheric injection. Tectonophysics, 181, 299–306.

    Article  Google Scholar 

  • Waseda, A. and Uchida, T., 2004, The geochemical context of gas hydrate in the eastern Nankai Trough. Resource Geology, 54, 69–78.

    Article  Google Scholar 

  • Woo, K.S., Noh, J.H., and Park, K.H., 2003, The origin of the carbonate concretions in the Yeonil Group, Pohang Basin. Journal of the Geological Society of Korea, 39, 1–24.

    Google Scholar 

  • Woo, K.S. and Khim, B.K., 2006, Stable oxygen and carbon isotopes of carbonate concretions of the Miocene Yeonil Group in the Pohang Basin, Korea: types of concretions and formation condition. Sedimentary Geology, 183, 15–30.

    Article  Google Scholar 

  • Yoon, S., 1975, Geology and paleontology of the Tertiary Pohang Basin, Pohang district, Korea, Part I. Geology. Journal of the Geological Society of Korea, 11, 187–214.

    Google Scholar 

  • Yoon, S., 2010, Tectonic history of the Tertiary Yangnam and Pohang basins, Korea. Journal of the Geological Society of Korea, 42, 95–110.

    Google Scholar 

  • Yun, H., 1986, Emended stratigraphy of the Miocene Formation in the Pohang Basin, Part I. Journal of Paleontological Society of Korea, 2, 54–69.

    Google Scholar 

  • Zhang, H., Zhu, Y., Wang, Y., and Chen, S., 2016, Comparison of organic matter occurrence and organic nanopore structure within marine and terrestrial shale. Journal of Natural Gas Science and Engineering, 32, 356–363.

    Article  Google Scholar 

Download references

Acknowledgments

We thank R. Jeon for his analytical assistance in the laboratory at Hanyang University. This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20172510102160). Furthermore, this work was partially supported by the Korea Institute of Marine Science and Technology Promotion (KIMST) (grant numbers 1525012287 (20210632); KOPRI-PM22050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Hoon Shin.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, DH., Kim, SH., Choi, J. et al. Geochemical signatures of organic matter associated with gas generation in the Pohang Basin, South Korea. Geosci J 26, 555–567 (2022). https://doi.org/10.1007/s12303-021-0046-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-021-0046-y

Key words

Navigation