Skip to main content
Log in

A high-resolution timescale for the Miocene Shanwang diatomaceous shale lagerstätte (China): development of Wavelet Scale Series Analysis for cyclostratigraphy

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

The Miocene aged Shanwang Formation from the Shanwang National Geopark in China represents a succession of lacustrine diatomaceous shales containing an abundant and diverse biota with lagerstätte fossilization of soft tissues. To date, the Shanwang Formation has not been investigated for cyclostratigraphy nor has it been dated with high precision methods. Now we use thorium data as a paleoenvironmental and paleoclimatic proxy to conduct a detailed cyclostratigraphic analysis. A new and simple cyclostratigraphic method, Wavelet Scale Series Analysis (WSSA) is developed to recognize Milankovitch cycles. A total of three short eccentricity and fifteen precession cycles are identified; obliquity cycles are not apparent. In the sedimentary succession, the corresponding precession and short eccentricity cycles are 1.17 m and 4.98 m thick respectively, with this verified by Correlation Coefficient (COCO) analysis and Multitaper-Method (MTM) spectral analysis. We estimate the studied interval was deposited over a duration of 0.3 Myr with a depositional rate of c. 5.7 cm/kyr. Paleomagnetic and radio isotope dating data shows that the diatomaceous shale was deposited during Chron C5En, which places it at approximately 18.5 Ma during the Burdigalian stage of the Early Miocene, rather than in the Middle Miocene as previously thought. The Shanwang lagerstätte biota therefore predates the Middle Miocene Climate Optimum (MMCO) and did not form within it. The geological time scale with a high resolution of 20 kyr was set accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aigner, T., Schauer, M., Junghans, W.D., and Reinhardt, L., 1995, Outcrop gamma-ray logging and its applications: examples from the German Triassic. Sedimentary Geology, 100, 47–61.

    Article  Google Scholar 

  • Batenburg, S.J., Sprovieri, M., Gale, A.S., Hilgen, F.J., Hüsing, S., Laskar, J., Liebrand, D., Lirer, F., Orue-Etxebarria, X., Pelosi, N., and Smit, J., 2012, Cyclostratigraphy and astronomical tuning of the Late Maastrichtian at Zumaia (Basque country, Northern Spain). Earth and Planetary Science Letters, 359–360, 264–278.

    Article  Google Scholar 

  • Chui, C.K., 1992, Wavelets: A Tutorial in Theory and Applications. Academic Press, San Diego, 723 p.

    Google Scholar 

  • Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., 2013, The ICS international chronostratigraphic chart. Episodes, 36, 199–204.

    Article  Google Scholar 

  • Deng, T., Wang, W.M., and Yue, L.P., 2003, Recent advances of the establishment of the Shanwang stage in the Chinese Neogene. Vertebrata Palasiatica, 41, 314–323. (in Chinese with English abstract)

    Google Scholar 

  • Dimri, V.P. and Prakash, M.R., 2001, Scaling of power spectrum of extinction events in the fossil record. Earth and Planetary Science Letters, 186, 363–370.

    Article  Google Scholar 

  • Fang, D.J., Zhu, X.Y., He, L.Z., and Lu, Y.S., 1980, The study of palaeomagnetism in Cainozoic basalts and its strata meaning at San-Huang District, San-Tung. Journal of Zhejiang University, S1, 49–57. (in Chinese with English abstract)

    Google Scholar 

  • Flower, B.P. and Kennett, J.P., 1994, The middle Miocene climatic transition: East Antarctic ice-sheet development, deep-ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology, 108, 537–555.

    Article  Google Scholar 

  • Ghil, M., Allen, M.R., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Robertson, A.W., Saunders, A., Tian, Y., Varadi, F., and Yiou, P., 2002, Advanced spectral methods for climatic time series. Reviews of Geophysics, 40, 1003.

    Article  Google Scholar 

  • Gradstein, F. and Ogg, J., 2004, Geologic Time Scale 2004 — why, how, and where next! Lethaia, 37, 175–181.

    Article  Google Scholar 

  • Harris, E.B., Strömberg, C.A.E., Sheldon, N.D., Smith, S.Y., and Vilhena, D.A., 2017, Vegetation response during the lead-up to the middle Miocene warming event in the Northern Rocky Mountains, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 401–415.

    Article  Google Scholar 

  • He, H.Y., Deng, C.L., Pan, Y.X., Deng, T., Luo, Z.H., Sun, J.M., and Zhu, R.X., 2011, New 40Ar/39Ar dating results from the Shanwang Basin, eastern China: constraints on the age of the Shanwang Formation and associated biota. Physics of the Earth and Planetary Interiors, 187, 66–75.

    Article  Google Scholar 

  • Hilgen, F.J., Kuiper, K.F., and Lourens, L.J., 2010, Evaluation of the astronomical time scale for the Paleocene and earliest Eocene. Earth and Planetary Science Letters, 300, 139–151.

    Article  Google Scholar 

  • Hinnov, L.A., 2000, New perspectives on orbitally forced stratigraphy. Annual Review of Earth and Planetary Science, 28, 419–475.

    Article  Google Scholar 

  • Hinnov, L.A. and Goldhammer, R.K., 1991, Spectral analysis of the middle Triassic Latemar Limestone. Journal of Sedimentary Research, 61, 1173–1193.

    Google Scholar 

  • Hinnov, L.A. and Ogg, J.G., 2007, Cyclostratigraphy and the astronomical time scale. Stratigraphy, 4, 239–251.

    Google Scholar 

  • Holden, C., 2001, Fossil trove preserved. Science, 291, 1481.

    Google Scholar 

  • Husson, D., Galbrun, B., Laskar, J., Hinnov, L.A., Thibault, N., Gardin, S., and Locklair, R.E., 2011, Astronomical calibration of the Maastrichtian (Late Cretaceous). Earth and Planetary Science Letters, 305, 328–340.

    Article  Google Scholar 

  • James, G. and Michael, E.G., 2006, Wavelet extractor: a Bayesian well-tie and wavelet extraction program. Computers and Geosciences, 32, 681–695.

    Article  Google Scholar 

  • Jovells, V.S. and Casanovas, V.I., 2018, A review of the genus Melissiodon (Cricetidae, Rodentia) in the Vallés-Penedès Basin (Catalonia). Journal of Vertebrate Paleontology, 38, e1520714. https://doi.org/10.1080/02724634.2018.1520714

    Article  Google Scholar 

  • Larrasoaña, J.C., Murelaga, X., and Garcés, M., 2006, Magnetobiochronology of Lower Miocene (Ramblian) continental sediments from the Tudela Formation (western Ebro basin, Spain). Earth and Planetary Science Letters, 243, 409–423.

    Article  Google Scholar 

  • Li, C.K., Wu, W.Y., and Qiu, Z.D., 1984, Chinese Neogene: subdivision and correlation. Vertebrata PalAsiatica, 22, 163–178. (in Chinese with English abstract)

    Google Scholar 

  • Li, M.S., Kump, L.R., Hinnov, L.A., and Mann, M.E., 2018, Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing. Earth and Planetary Science Letters, 501, 165–179.

    Article  Google Scholar 

  • Liang, M.M., Bruch, A., Collinson, M., Mosbrugger, V., Li, C.S., Sun, Q.G., and Hilton, J., 2003, Testing the climatic estimates from different palaeobotanical methods: an example from the Middle Miocene Shanwang flora of China. Palaeogeography, Palaeoclimatology, Palaeoecology, 198, 279–302.

    Article  Google Scholar 

  • Mallat, S.G., 1989, A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 674–693.

    Article  Google Scholar 

  • Ogg, J.G., 2012, Geomagnetic polarity time scale. In: Gradstein, F.M., Ogg, J.G., Schmitz, M., and Ogg, G. (eds.), The Geologic Time Scale 2012 (1st edition). Elsevier, Amsterdam, p. 85–113.

    Chapter  Google Scholar 

  • Osmond, J.K. and Ivanovich, M., 1992, Uranium-series mobilisationand surface hydrology. In: Ivanovich, M. and Harmon, R.S. (eds.), Uranium-series Disequilibrium: Applications to Earth, Marine and Environmental Sciences. Clarendon Press, Oxford, p. 259–289.

    Google Scholar 

  • Paillard, D., Labeyrie, L., and Yiou, P., 1996, Macintosh program performs time-series analysis. Eos, Transactions American Geophysical Union, 77, 379.

    Article  Google Scholar 

  • Park, J. and Herbert, T.D., 1987, Hunting for paleoclimatic periodicities in a geologic time-series with an uncertain time scale. Journal of Geophysical Research: Solid Earth, 92, 14027–14040.

    Article  Google Scholar 

  • Parkinson, D.N., 1996, Gamma-ray spectrometry as a tool forstratigraphical interpretation: examples from the western European Lower Jurassic. In: Hesselbo, S.P. and Parkinson, D.N. (eds.), Sequence Stratigraphy in British Geology. Geological Society, London, Special Publications, 103, p. 231–255.

    Google Scholar 

  • Pas, D., Hinnov, L., Day, J.E., Kodama, K., Sinnesael, M., and Liu, W., 2018, Cyclostratigraphic calibration of the Famennian stage (Late Devonian, Illinois Basin, USA). Earth and Planetary Science Letters, 488, 102–114.

    Article  Google Scholar 

  • Prokoph, A. and Agterberg, F.P., 1999, Detection of sedimentary cyclicity and stratigraphic completeness by wavelet analysis: an application to Late Albian cyclostratigraphy of the western Canada sedimentary basin. Journal of Sedimentary Research, 60, 862–875.

    Article  Google Scholar 

  • Prokoph, A. and Agterberg, F.P., 2000, Wavelet analysis of well-logging data from oil source rock, Egret Member, offshore eastern Canada. American Association of Petroleum Geologists Bulletin, 84, 1617–1632.

    Google Scholar 

  • Prokoph, A. and Barthelmes, F., 1996, Detection of nonstationarities in geological time series: wavelet transform of chaotic and cyclic sequences. Computers and Geosciences, 22, 1097–1108.

    Article  Google Scholar 

  • Qin, W.S., Liu, J.B., Han, B.F., Wang, X.Z., and Li, F.C., 2004, Types and origin of diatomaceous laminae of the Miocene Shanwang Formation in Linqu, Shandong Province. Acta Sedimentologica Sinica, 22, 267–275. (in Chinese with English abstract)

    Google Scholar 

  • Rocek, Z., Dong, L.P., Prikryl, T., Sun, C.K., Tan, J., and Wang, Y., 2011, Fossil frogs (Anura) from Shanwang (Middle Miocene; Shandong Province, China). Geobios, 44, 499–518.

    Article  Google Scholar 

  • Seilacher, A., Reif, W.E., and Westphal, F., 1985, Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philosophical Transactions of the Royal Society B: Biological Sciences, 311, 5–24.

    Google Scholar 

  • Song, Y.G., Wang, Q.S., An, Z.S., Qiang, X.K., Dong, J.B., Chang, H., Zhang, M.S., and Guo, X.H., 2018, Mid-Miocene climatic optimum: clay mineral evidence from the red clay succession, Longzhong Basin, Northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 512, 46–55.

    Article  Google Scholar 

  • Sun, Q.G., Collinson, M.E., Li, C.S., Wang, Y.F., and Beerling, D.J., 2002, Quantitative reconstruction of palaeoclimate from the Middle Miocene Shanwang flora, eastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 180, 315–329.

    Article  Google Scholar 

  • Tagliaferri, R., Ciaramella, A., Longo, G., Milano, M., Barone, F., and Pelosi, N., 2001, Soft computing methodologies for spectral analysis in cyclostratigraphy. Computers and Geosciences, 27, 535–548.

    Article  Google Scholar 

  • Thomson, D.J., 1982, Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70, 1055–1096.

    Article  Google Scholar 

  • Tian, H.S., Van Loon, A.J.(Tom), Zhang, Z.Q., Zhang, S.H., Zhang, B.H., Lu, M.Y., Li, F.C., and Ma, X.M., 2015, Neogene Paleoseismic Events and the Shanwang Biota’s Burial in the Linqu Area, Shandong Province, China. Acta Geologica Sinica (English Edition), 89, 1103–1119.

    Article  Google Scholar 

  • Torrence, C. and Compo, G.P., 1998, A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79, 61–78.

    Article  Google Scholar 

  • Wan, S., Kürschner, W.M., Clift, P.D., Li, A., and Li, T., 2009, Extreme weathering/erosion during the Miocene Climatic Optimum: evidence from sediment record in the South China Sea. Geophysical Research Letters, 36, L19706.

    Article  Google Scholar 

  • Wang, C.S., Scott, R.W., Wan, X.Q., Graham, S.A., Huang, Y.J., Wang, P.J., Wu, H.C., Dean, W.E., and Zhang, L.M., 2013, Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric sea strata. Earth-Science Reviews, 126, 275–299.

    Article  Google Scholar 

  • Weedon, G.P., 1986, Hemipelagic shelf sedimentation and climatic cycles: the basal Jurassic (Blue Lias) of South Britain. Earth and Planetary Science Letters, 76, 321–335.

    Article  Google Scholar 

  • Weedon, G.P., 1989, The detection and illustration of regular sedimentary cycles using Walsh power spectra and filtering, with examples from the Lias of Switzerland. Journal of the Geological Society, 146, 133–144.

    Article  Google Scholar 

  • Weedon, G.P., 2003, Time-Series Analysis and Cyclostratigraphy. Cambridge University Press, Cambridge, 259 p.

    Book  Google Scholar 

  • Wu, H.C., Zhang, S.H., Hinnov, L.A., Jiang, G.Q., Yang, T.S., Li, H.Y., Wan, X.Q., and Wang, C.S., 2014, Cyclostratigraphy and orbital tuning of the terrestrial upper Santonian-Lower Danian in Songliao Basin, northeastern China. Earth and Planetary Science Letters, 407, 82–95.

    Article  Google Scholar 

  • Wu, H.C., Zhang, S.H., Jiang, G.Q., and Huang, Q.H., 2009, The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications. Earth and Planetary Science Letters, 278, 308–323.

    Article  Google Scholar 

  • Wu, H.C., Zhang, S.H., Jiang, G.Q., Hinnov, L., Yang, T.S., Li, H.Y., Wan, X.Q., and Wang, C.S., 2013, Astrochronology of the Early Turonian-Early Campanian terrestrial succession in Songliao Basin, northeastern China and its implication for the long-period behavior of the Solar System. Palaeogeography, Palaeoclimatology, Palaeoecology, 385, 55–70.

    Article  Google Scholar 

  • Yang, H. and Yang, S.P., 1994, The Shanwang fossil biota in eastern China: a Miocene Konservat-Lagerstätte in lacustrine deposits. Lethaia, 27, 345–354.

    Article  Google Scholar 

  • Yu, J.F., Guo, K., Yuan, X.X., Fu, W.Z., and Xun, Z.F., 2010, Wavelet denoising of well logs and its geological performance. Energy Exploration and Exploitation, 28, 87–95.

    Article  Google Scholar 

  • Yu, J.F., Sui, F.G., Li, Z.X., Liu, H., and Wang, Y.L., 2008, Recognition of Milankovitch cycles in the stratigraphic record: application of the CWT and the FFT to well-log data. Journal of China University of Mining and Technology, 18, 594–598.

    Article  Google Scholar 

  • Yu, J.F., Zhao, X.G., Pang, X.L., Hilton, J., Fu, W.Z., Zhao X.L., Song, Z.J., Hu, J.L., Lu, L., Zhang, H.J., Yang, Z.Q., Qiao, W.Y., and Shi, S., 2017, Redefining the age of the Cenozoic Shanwang Formation in Shanwang Basin. Acta Geologica Sinica (English Edition), 91, 1491–1492.

    Article  Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.

    Article  Google Scholar 

  • Zhang, L.M., Wang, C.S., Li, X.H., Cao, K., Song, Y., Hu, B., Lu, D.W., Wang, Q., Du, X.J., and Cao, S., 2015, A new paleoclimate classification for deep time. Palaeogeography, Palaeoclimatology, Palaeoecology, 443, 98–106.

    Article  Google Scholar 

  • Zhang, M.S. and Shan, L.F., 1994, Sedimentary Geology of Shanwang Basin. Geological Publishing House, Beijing, 84 p.

    Google Scholar 

  • Zhang, X.L., Feng, Q., Sun, P., and Li, W., 2010, Characteristics of high gamma ray reservoir of Yanchang formation in Ordos basin. Chinese Journal of Geophysics, 53, 205–213.

    Google Scholar 

Download references

Acknowledgments

Thanks are given to Professor A.J. (Tom) Van Loon for his constructive suggestions on an earlier version of the manuscript. Thanks are also given to Mr. Gang Zhao for his help in the field. This work was financially supported by the National Natural Science Foundation of China (41472092) and the Scientific and Technological Innovation Project of the Qingdao National Laboratory for Marine Science and Technology (No. 2016ASKJ13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jifeng Yu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Pang, X., Fu, W. et al. A high-resolution timescale for the Miocene Shanwang diatomaceous shale lagerstätte (China): development of Wavelet Scale Series Analysis for cyclostratigraphy. Geosci J 25, 561–574 (2021). https://doi.org/10.1007/s12303-020-0055-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-020-0055-2

Key words

Navigation