Palynology, mineralogy and geochemistry of sediments in Tondè locality, northern part of Douala sub-basin, Cameroon, Central Africa: implication on paleoenvironment

Abstract

A multi-proxy study, including mineralogy, whole rock geochemistry and palynology analyses, was conducted on 79 samples (64 bulk sediment and 10 pyrite samples) from two sites (ES and DA) located in the Tondè area, Douala sub-basin (Cameroon) to unravel the paleoenvironmental and paleoclimatic conditions prevailing in recent continental deposits. Lithologies of this locality mainly consist of pyriteous claystones (grey and red) and unconsolided sandstones. Encountered pyrite is euhedral (isolated and clusters crystals) and massive with diverse morphologies and sizes. In both sections, major and trace elements show that the clayey materials result from weathering of an intermediate source rock, probably from the surrounding basement (gneiss and micaschist), whereas the sandy materials appear to be recycled. Palynological data consists of a few index species such as Malvaceae and graminaceae which indicate Pleistocene-Holocene age deposits of continental origin (swampy bays of seaside and hinterland). This area was subjected to intense chemical alteration (high CIA values: 97.35–99.43%) as testified by the mineralogical phases, mainly consist of kaolinite, quartz and goethite. Mean annual precipitation (MAP = 221.1e0.0197(CIA-K); ±181 mm.y−1) and mean annual temperature (MAT = 46.9C + 4; ±0.6 °C) are 1575 ±181 mm.y−1 and 25.2 ± 0.6 °C for ES site and then 1566 ± 181 mm.y−1 and 20.3 ± 0.6 °C for DA, thus reflecting a subequatorial to equatorial climate. The pyrite geochemistry is characterized by a weak Al vs. ΣREE positive correlation (r2 = 0.02), a positive Eu anomaly relative to PAAS and a significant negative correlation between ΣREE and the Eu anomaly (r2 = −0.83). These results indicate that pyrite is a late diagenesis product formed by a secondary enrichment and coupled with precipitation under more reducing conditions, linked to the water table fluctuation.

This is a preview of subscription content, log in to check access.

References

  1. Abdullayev, E. and Leroy, S., 2016, Provenance of clay minerals in the sediments from the Pliocene Productive Series, western South Caspian Basin. Marine and Petroleum Geology, 73, 517–527.

    Google Scholar 

  2. Acharya, S., Panigrahi, M., Gupta, A., and Tripathy, S., 2015, Response of trace metal redox proxies in continental shelf environment: the eastern Arabian Sea scenario. Continental Shelf Research, 106, 70–84.

    Google Scholar 

  3. Adatte, T., Stinnesbeck, W., and Keller, G., 1996, Lithostratigraphic and mineralogic correlations of near K/T boundary clastic sediments in northeastern Mexico: implications for origin and nature of deposition. In: Ryder, G., Fastovsky, D.E., and Gartner, S. (eds.), The Cretaceous-Tertiary Event and Other Catastrophes in Earth History. GSA Special Papers, Geological Society of America, Boulder, 307, p. 211–226. https://doi.org/10.1130/0-8137-2307-8.211

    Google Scholar 

  4. Adatte, T., Keller, G., and Stinnesbeck, W., 2002, Late Cretaceous to early Paleocene climate and sea-level fluctuations: The Tunisian record. Palaeogeography, Palaeoclimatology, Palaeoecology, 178, 165–196.

    Google Scholar 

  5. Anaya-Gregorio, A., Armstrong-Altrin, J., Machain-Castillo, M., Montiel-García, P., and Ramos-Vázquez, M., 2018, Textural and geochemical characteristics of late Pleistocene to Holocene fine-grained deep-sea sediment cores (GM6 and GM7), recovered from southwestern Gulf of Mexico. Journal of Palaeogeography, 7, 1–19.

    Google Scholar 

  6. Armstrong-Altrin, J., Lee, Y., Verma, S., and Ramasamy, S., 2004, Geochemistry of sandstones from the upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research, 74, 285–297.

    Google Scholar 

  7. Armstrong-Altrin, J., Machain-Castillo, M., Rosales-Hoz, L., Carranza-Edwards, A., Sanchez-Cabeza, J., and Ruíz-Fernández, A., 2015, Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis. Continental Shelf Research, 95, 15–26.

    Google Scholar 

  8. Armstrong-Altrin, J., Ramos-Vázquez, M., Zavala-León, A., and Montiel-García, P., 2018, Provenance discrimination between Atasta and Alvarado beach sands, western Gulf of Mexico, Mexico: Constraints from detrital zircon chemistry and U-Pb geochronology. Geological Journal, 53, 2824–2848.

    Google Scholar 

  9. Armstrong-Altrin, J., Botello, A., Villanueva, S., and Soto, L., 2019, Geochemistry of surface sediments from the northwestern Gulf of Mexico: implications for provenance and heavy metal contamination. Geological Quarterly, 63, 522–538.

    Google Scholar 

  10. Barreda, V., Guler, V., and Palazzesi, L., 2008, Late Miocene continental and carine palynological assemblages from Patagonia. Developments in Quaternary Sciences, 11, 343–350.

    Google Scholar 

  11. Berner, R., 1984, Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, 48, 605–615.

    Google Scholar 

  12. Bertolino, S., Zimmermann, U., and Sattler, F., 2007, Mineralogy and geochemistry of bottom sediments from water reservoirs in the vicinity of Córdoba, Argentina: environmental and health constraints. Applied Clay Science, 36, 206–220.

    Google Scholar 

  13. Botsou, F., Godelitsas, A., Kaberi, H., Mertzimekis, T., Goettlicher, J., Steininger, R., and Scoullos, M., 2015, Distribution and partitioning of major and trace elements in pyrite-bearing sediments of a Mediterranean coastal lagoon. Geochemistry, 75, 219–236.

    Google Scholar 

  14. Braun, J., Pagel, M., Herbilln, A., and Rosin, C., 1993, Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: a mass balance study. Geochimica et Cosmochimica Acta, 57, 4419–4434.

    Google Scholar 

  15. Budakoglu, M., Abdelnasser, A., Karaman, M., and Kumral, M., 2015, The rare earth element geochemistry on surface sediments, shallow cores and lithological units of Lake Acıgöl basin, Denizli, Turkey. Journal of Asian Earth Sciences, 111, 632–662.

    Google Scholar 

  16. Bukalo, N., Ekosse, G., Odiyo, J., and Ogola, J., 2019, Paleoclimatic implications of hydrogen and oxygen isotopic compositions of Cretaceous-Tertiary kaolins in the Douala Sub-Basin, Cameroon. Comptes Rendus Geoscience, 351, 17–26.

    Google Scholar 

  17. Chamley, H., 1989, Clay Sedimentology. Springer, Berlin, 623 p.

    Google Scholar 

  18. Chamley, H., 1997, Clay mineral sedimentation in the Ocean. In: Paquet, H. and Clauer, N. (eds.), Soils and Sediments: Mineralogy and Geochemistry. Springer, Berlin, p. 269–302. https://doi.org/10.1007/978-3-642-60525-3_13

    Google Scholar 

  19. Chiffoleau, J.-F., 1994, Le chrome en milieu marin. Repères Océan N° 8, Rapports Scientifiques et Techniques de l’IFREMER, Plouzané, 43 p. https://archimer.ifremer.fr/doc/00000/1430/

  20. Condie, K. and Wronkiewicz, D., 1990, The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution. Earth and Planetary Science Letters, 97, 256–267.

    Google Scholar 

  21. Condie, K., Dengate, J., and Cullers, R., 1995, Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA. Geochimica et Cosmochimica Acta, 59, 279–294.

    Google Scholar 

  22. Cox, R., Lowe, D., and Cullers, R., 1995, The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59, 2919–2940.

    Google Scholar 

  23. Cullers, R., 1988, Mineralogical and chemical changes of soil and stream sediment formed by intense weathering of the Danburg granite, Georgia, U.S.A. Lithos, 21, 301–314. https://doi.org/10.1016/0024-4937(88)90035-7

    Google Scholar 

  24. Cullers, R., 1994, The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 58, 4955–4972.

    Google Scholar 

  25. Cullers, R., 2000, The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51, 181–203.

    Google Scholar 

  26. Cullers, R., Chaudhuri, S., Kilbane, N., and Koch, R., 1979, Rare-earths in size fractions and sedimentary rocks of Pennsylvanian-Permian age from the mid-continent of the U.S.A. Geochimica et Cosmochimica Acta, 43, 1285–1301.

    Google Scholar 

  27. Curtis, C., 1990, Aspects of climatic influence on the clay mineralogy and geochemistry of soils, palaeosols and clastic sedimentary rocks. Journal of the Geological Society, 147, 351–357.

    Google Scholar 

  28. Dabard, M. and Loi, A., 2012, Environmental control on concretion-forming processes: examples from Paleozoic terrigenous sediments of the North Gondwana margin, Armorican Massif (Middle Ordovician and Middle Devonian) and SW Sardinia (Late Ordovician). Sedimentary Geology, 267–268, 93–103.

    Google Scholar 

  29. Ding, H., Yao, S., and Chen, J., 2014, Authigenic pyrite formation and reoxidation as an indicator of an unsteady-state redox sedimentary environment: evidence from the intertidal mangrove sediments of Hainan Island, China. Continental Shelf Research, 78, 85–99.

    Google Scholar 

  30. Fagel, N., 2007, Clay minerals, deep circulation and climate. In: Hillaire-Marcel, C. and De Vernal, A. (eds.), Proxies in Late Cenozoic Paleoceanography (1st edition). Developments in Marine Geology, 1, p. 139–184. https://doi.org/10.1016/S1572-5480(07)01009-3

  31. Garzanti, E., Andò, S., France-Lanord, C., Vezzoli, G., Censi, P., Galy, V, and Najman, Y., 2010, Mineralogical and chemical variability of fluvial sediments1. Bedload sand (Ganga-Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 299, 368–381.

    Google Scholar 

  32. Giresse, P., Megope-Foonde, J.P., Ngueutchoua, G., Aloisi, J.C., Kuete, M., and Monteillet, J., 1996, Carte sédimentologique du plateau continental du Cameroun à 1: 200000 (Notice Explicative 111). Institut Français de Recherche Scientifique pour le Développement en Coopération, ORSTOM, Paris, 41 p. http://www.documentation.ird.fr/hor/fdi:010007562

    Google Scholar 

  33. Girty, G.H., Ridge, D.L., Knaack, C., Johnson, D., and Al-Riyami, R.K., 1996, Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. Journal of Sedimentary Research, 66, 107–118. https://doi.org/10.1306/D42682CA-2B26-11D7-8648000102C1865D

    Google Scholar 

  34. Hamer, J., Sheldon, N., Nichols, G., and Collinson, M., 2007, Late Oligocene-Early Miocene paleosols of distal fluvial systems, Ebro Basin, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 247, 220–235.

    Google Scholar 

  35. Hatch, J. and Leventhal, J., 1992, Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 99, 65–82.

    Google Scholar 

  36. Hayashi, K., Fujisawa, H., Holland, H., and Ohmoto, H., 1997, Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61, 4115–4137.

    Google Scholar 

  37. Hernández-Hinojosa, V., Montiel-García, P., Armstrong-Altrin, J., Nagarajan, R., and Kasper-Zubillaga, J., 2017, Textural and geochemical characteristics of beach sands along the western Gulf of Mexico, Mexico. Carpathian Journal of Earth and Environmental Sciences, 13, 161–174.

    Google Scholar 

  38. Hillier, S., 1995, Erosion, sedimentation and sedimentary origin of clays. In: Velde, B. (ed.), Origin and Mineralogy of Clays: Clays and the Environment. Springer, Berlin, p. 162–219. https://doi.org/10.1007/978-3-662-12648-6_4

    Google Scholar 

  39. Hofmann, A., Bekker, A., Rouxel, O., Rumble, D., and Master, S., 2009, Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks: a new tool for provenance analysis. Earth and Planetary Science Letters, 286, 436–445.

    Google Scholar 

  40. Jones, B. and Manning, D., 1994, Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111, 111–129.

    Google Scholar 

  41. Kenfack, P.L., Njike Ngaha, P.R., Ekodeck, G.E., and Ngueutchoua, G., 2012, Fossils dinoflagellates from the northern border of the Douala sedimentary sub-Basin (South-West Cameroon): age assessment and paleoecological interpretations. Geosciences, 2, 117–124. DOI: https://doi.org/10.5923/j.geo.20120205.03

    Google Scholar 

  42. Khozyem, H., Adatte, T., Spangenberg, J.E., Tantawy, A.A., and Keller, G., 2013, Palaeoenvironmental and climatic changes during the Paleocene-Eocene Thermal Maximum (PETM) at Wadi Nukhul Section, Sinai, Egypt. Journal of the Geological Society, 170, 341–352. https://doi.org/10.1144/jgs2012-046

    Google Scholar 

  43. Klug, H.P. and Alexander, L., 1974, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (1st and 2nd editions). John Wiley and Sons, New York, 992 p.

    Google Scholar 

  44. Kortenski, J. and Kostova, I., 1996, Occurrence and morphology of pyrite in Bulgarian coals. International Journal of Coal Geology, 29, 273–290.

    Google Scholar 

  45. Kübler, B., 1987, Cristallinit de l’illite, méthodes normalisées de préparations, méthodes normalisées de mesures. Neuchâtel, Suisse, Cahiers Institut de Géologie, Série ADX, Vol. 1, 13 p.

  46. Kutterolf, S., Diener, R., Schacht, U., and Krawinkel, H., 2008, Provenance of the Carboniferous Hochwipfel Formation (Karawanken Mountains, Austria/Slovenia) — Geochemistry versus petrography. Sedimentary Geology, 203, 246–266.

    Google Scholar 

  47. Large, R., Halpin, J., Danyushevsky, L., Maslennikov, V., Bull, S., Long, J., Gregory, D., Lounejeva, E., Lyons, T., Sack, P., McGoldrick, P., and Calver, C., 2014, Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution. Earth and Planetary Science Letters, 389, 209–220.

    Google Scholar 

  48. Lawrence, S., Munday, S., and Bray, R., 2002, Regional geology and geophysics of the eastern Gulf of Guinea (Niger Delta to Rio Muni). The Leading Edge, 21, 1112–1117.

    Google Scholar 

  49. Lim, D., Jung, H., and Choi, J., 2014, REE partitioning in riverine sediments around the Yellow Sea and its importance in shelf sediment provenance. Marine Geology, 357, 12–24.

    Google Scholar 

  50. MacRae, N., Nesbitt, H., and Kronberg, B, 1992, Development of a positive Eu anomaly during diagenesis. Earth and Planetary Science Letters, 109, 585–591.

    Google Scholar 

  51. Madhavaraju, J. and Lee, Y.I., 2009, Geochemistry of the Dalmiapuram Formation of the Uttatur Group (early Cretaceous), Cauvery basin, southeastern India: implications on provenance and paleo-redox conditions. Revista Mexicana de Ciencias Geológicas, 26, 380–394.

    Google Scholar 

  52. Madhavaraju, J., Tom, M., Lee, Y., Balaram, V., Ramasamy, S., Carranza-Edwards, A., and Ramachandran, A., 2016, Provenance and tectonic settings of sands from Puerto Peñasco, Desemboque and Bahia Kino beaches, Gulf of California, Sonora, México. Journal of South American Earth Sciences, 71, 262–275.

    Google Scholar 

  53. Marbut, C.F., 1935, Soils of the United States. In: Baker, O.E. (ed.), Atlas of American Agriculture, Part III. US Bureau of Agricultural Economics, US Department of Agriculture, US Bureau of Chemistry and Soils, U.S. Government Publishing Office, Washington DC., 8, 98 p.

    Google Scholar 

  54. Mbesse, C.O., Roche, E., and Ngos III, S., 2012, The Paleocene-Eocene boundary in the Douala Basin (Cameroon). Dinocysts biostratigraphy and tentative of paleoenvironmental reconstruction. International Journal of Tropical Geology, Geography and Ecology, 36, 83–119. http://www.geoecotrop.be/index.php?page=numero-36

    Google Scholar 

  55. McLennan, S., 2001, Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2. https://doi.org/10.1029/2000GC000109

  56. McLennan, S., Taylor, S., and Eriksson, K., 1983, Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia. Geochimica et Cosmochimica Acta, 47, 1211–1222.

    Google Scholar 

  57. McLennan, S.M., Hemming, S., McDaniel, D.K., and Hanson, G.N., 1993, Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson, M.J. and Basu, A. (eds.), Processes Controlling the Composition of Clastic Sediments. GSA Special Papers, Geological Society of America, Boulder, 284, p. 21–40. https://doi.org/10.1130/SPE284-p21

    Google Scholar 

  58. Middelburg, J., van der Weijden, C., and Woittiez, J., 1988, Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chemical Geology, 68, 253–273.

    Google Scholar 

  59. Murray, R., Buchholtz Ten Brink, M., Gerlach, D., Russ, G., and Jones, D., 1991, Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: assessing REE sources to fine-grained marine sediments. Geochimica et Cosmochimica Acta, 55, 1875–1895.

    Google Scholar 

  60. Nagarajan, R., Madhavaraju, J., Nagendra, R., Armstrong-Altrin, J.S., and Moutte, J., 2007, Geochemistry of Neoproterozoic shales of the Rabanpalli Formation, Bhima Basin, northern Karnataka, southern India: implications for provenance and paleoredox conditions. Revista Mexicana de Ciencias Geológicas, 24, 150–160.

    Google Scholar 

  61. Nagarajan, R., Armstrong-Altrin, J., Kessler, F., Hidalgo-Moral, E., Dodge-Wan, D., and Taib, N., 2015, Provenance and tectonic setting of Miocene siliciclastic sediments, Sibuti formation, northwestern Borneo. Arabian Journal of Geosciences, 8, 8549–8565.

    Google Scholar 

  62. Ndome Effoudou-Priso, E., Onana, V., Boubakar, L., Beyala, V., and Ekodeck, G., 2014, Relationships between major and trace elements during weathering processes in a sedimentary context: implications for the nature of source rocks in Douala, Littoral Cameroon. Chemie der Erde, 74, 765–781.

    Google Scholar 

  63. Nesbitt, H.W. and Markovics, G., 1997, Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta, 61, 1653–1670.

    Google Scholar 

  64. Nesbitt, H.W. and Young, G.M., 1984, Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochemica et Cosmochemica Acta, 48, 1523–1534.

    Google Scholar 

  65. Nesbitt, H.W. and Young, G.M., 1989, Formation and diagenesis of weathering profiles. Journal of Geology, 97, 129–147.

    Google Scholar 

  66. Ngon Ngon, G., Etame, J., Ntamak-Nida, M., Mbesse, C., Mbai, J., Bayiga, É., and Gerard, M., 2016, Geochemical and palaeoenvironmental characteristics of Missole I iron duricrusts of the Douala sub-basin (Western Cameroon). Comptes Rendus Geoscience, 348, 127–137.

    Google Scholar 

  67. Ngon Ngon, G.-F., Mbabi Bitchong, A., Mbaï, J.S., Ngos III, S., Yongue Fouateu, R., and Bilong, P., 2019, Geochemistry of pyriteous mud-rocks of the cenozoic N’Kapa formation in Douala Sub-basin, western Cameroon (Central Africa): source rock weathering, provenance, paleo-redox conditions and tectonic settings. Journal of African Earth Sciences, 156, 44–57.

    Google Scholar 

  68. Ngon Ngon, G., Mbog, M., Etame, J., Ntamak-Nida, M., Logmo, E., Gerard, M., Yongue-Fouateu, R., and Bilong, P., 2014, Geochemistry of the Paleocene-Eocene and Miocene-Pliocene clayey materials of the eastern part of the Wouri River (Douala sub-basin, Cameroon): influence of parent rocks. Journal of African Earth Sciences, 91, 110–124.

    Google Scholar 

  69. Nguene, F.-R., Tamfu, S., Loule, J.-P., and Ngassa, C., 1992, Palaeoenvironments of the Douala and Kribi/Campo subbasins, in Cameroon, West Africa. In: Curnelle, R. (ed.), Géologie Africaine, Bulletin du Centre de Recherche Exploration Production Elf-Aquitaine, Memoire, 13, p. 129–139.

  70. Njike Ngaha, P.R., 1984, Contribution l’étude géologique, stratigraphique et structurale de la bordure Atlantique du Cameroun. Thèse 3ème cycle, Universit de Yaound, Yaound, 131 p.

    Google Scholar 

  71. Njike Ngaha, P.R., 2005, Palynostratigraphie et reconstitution des paléoenvironnements du Crétacé de l’Est du bassin sédimentaire de Douala (Cameroun). Thèse d’Etat, Université de Yaoundé I, Yaoundé, 259 p.

    Google Scholar 

  72. Pattan, J.N., Masuzawa, T., and Yamamoto M., 2005, Variations in terrigenous sediment discharge in a sediment core from southeastern Arabian Sea during the last 140 ka. Current Science, 89, 1421–1425.

    Google Scholar 

  73. Piper, D. and Bau, M., 2013, Normalized rare earth elements in water, sediments, and wine: identifying sources and environmental redox conditions. American Journal of Analytical Chemistry, 4, 69–83.

    Google Scholar 

  74. Potter, P E., Maynard, J.B., and Pryor, W.A., 1980, Sedimentology of Shale: Study Guide and Reference Source. Springer, New York, 310 p.

    Google Scholar 

  75. Price, J.R. and Velbel, M.A., 2003, Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202, 397–416.

    Google Scholar 

  76. Quantin, P., 1965, Les sols de la République Centrafricaine, Paris. ORSTOM, Memoires, 16, 113 p. http://www.documentation.ird.fr/hor/fdi:10964

    Google Scholar 

  77. Querol, X., Chinchon, S., and Lopez-Soler, A., 1989, Iron sulfide precipitation sequence in Albian coals from the Maestrazgo Basin, southeastern Iberian Range, northeastern Spain. International Journal of Coal Geology, 11, 171–189.

    Google Scholar 

  78. Ramos-Vázquez, M. and Armstrong-Altrin, J., 2019, Sediment chemistry and detrital zircon record in the Bosque and Paseo del Mar coastal areas from the southwestern Gulf of Mexico. Marine and Petroleum Geology, 110, 650–675.

    Google Scholar 

  79. Ramos-Vázquez, M., Armstrong-Altrin, J., Machain-Castillo, M., and Gío-Argáez, F., 2018, Foraminiferal assemblages, 14C ages, and compositional variations in two sediment cores in the western Gulf of Mexico. Journal of South American Earth Sciences, 88, 480–496.

    Google Scholar 

  80. Regnoult, J.M., 1986, Synthèse géologique du Cameroun. Ministère des Mines et de l’Energie, Yaound, Cameroun, 119 p.

    Google Scholar 

  81. Righi, D. and Meunier, A., 1995, Origin of clays by rock weathering and soil formation. In: Velde, B. (ed.), Origin and Mineralogy of Clays: Clays and the Environment. Springer, Berlin, p 43–161. https://doi.org/10.1007/978-3-662-12648-6_3

    Google Scholar 

  82. Salard-Cheboldaeff, M., 1977, Palynologie du bassin sédimentaire littoral du Cameroun dans ses rapports avec la stratigraphie et la paleoécologie. Thèse de Doctorat d’Etat ès sciences naturelles, Université Pierre et Marie Curie, Paris, 262 p.

    Google Scholar 

  83. Salard-Chebodaeff, M., 1980, Palynologie camerounaise. I. Pollens de la Mangrove et des fourrés arbustifs côtiers. Compte Rendus Congres National des Sociétés Savantes, 106, p. 125–136.

    Google Scholar 

  84. Salard-Cheboldaeff, M., 1990, Intertropical African palynostratigraphy from Cretaceous to late quaternary times. Journal of African Earth Sciences (and the Middle East), 11, 1–24.

    Google Scholar 

  85. Schaller, T., Moor, H., and Wehrli, B., 1997, Sedimentary profiles of Fe, Mn, V, Cr, As and Mo as indicators of benthic redox conditions in Baldeggersee. Aquatic Sciences, 59, 345–361.

    Google Scholar 

  86. Sheldon, N., 2006, Quaternary glacial-interglacial climate cycles in Hawaii. The Journal of Geology, 114, 367–376.

    Google Scholar 

  87. Sheldon, N. and Retallack, G., 2004, Regional Paleoprecipitation Records from the Late Eocene and Oligocene of North America. The Journal of Geology, 112, 487–494.

    Google Scholar 

  88. Sheldon, N., Retallack, G., and Tanaka, S., 2002, Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. The Journal of Geology, 110, 687–696.

    Google Scholar 

  89. Sheldon, N. and Tabor, N., 2009, Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 95, 1–52.

    Google Scholar 

  90. Singer, A., 1980, The paleoclimatic interpretation of clay minerals in soils and weathering profiles. Earth-Science Reviews, 15, 303–326.

    Google Scholar 

  91. Singh, P., 2009, Major, trace and REE geochemistry of the Ganga River sediments: influence of provenance and sedimentary processes. Chemical Geology, 266, 242–255.

    Google Scholar 

  92. Singh, P. and Rajamani, V., 2001, REE geochemistry of recent clastic sediments from the Kaveri floodplains, southern India: implication to source area weathering and sedimentary processes. Geochimica et Cosmochimica Acta, 65, 3093–3108.

    Google Scholar 

  93. SNH/UD, 2005, Stratigraphie séquentielle et tectonique des dépôts mesozoic syn-rifts du Bassin de Kribi/Campo. In: Ntamak-Nida, M.J., Mpesse, J.E., Ketchemen-Tandia, B., Ndong Ondo, S., Courville, P., and Baudin, F. (eds.), Rapport Interne, 11 planches, 2 rapports annexes d’analyses, Unpublished report, 134 p.

  94. Tapia-Fernandez, H., Armstrong-Altrin, J., and Selvaraj, K., 2017, Geochemistry and U-Pb geochronology of detrital zircons in the Brujas beach sands, Campeche, Southwestern Gulf of Mexico, Mexico. Journal of South American Earth Sciences, 76, 346–361.

    Google Scholar 

  95. Tawfik, H., Salah, M., Maejima, W., Armstrong-Altrin, J., Abdel-Hameed, A., and El Ghandour, M., 2017, Petrography and geochemistry of the Lower Miocene Moghra sandstones, Qattara Depression, north Western Desert, Egypt. Geological Journal, 53, 1938–1953.

    Google Scholar 

  96. Taylor, K.G. and Macquaker, J.H.S., 2000, Spatial and temporal distribution of authigenic minerals in continental shelf sediments: implications for sequence stratigraphic analysis. In: Glenn, C., Prévôt-Lucas, L., and Lucas, J. (eds.), Marine Authigenesis: Microbial to Global. SEPM Special Publication, SEPM Society for Sedimentary Geology, 66, p. 309–323. https://doi.org/10.2110/pec.00.66.0309

  97. Taylor, S.R. and MacLennan, S.M., 1985, The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford, 312 p.

    Google Scholar 

  98. Thiry, M., 2000, Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth-Science Reviews, 49, 201–221.

    Google Scholar 

  99. Tribovillard, N., Algeo, T., Lyons, T., and Riboulleau, A., 2006, Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232, 12–32.

    Google Scholar 

  100. Van der Weijden, C., 2002, Pitfalls of normalization of marine geochemical data using a common divisor. Marine Geology, 184, 167–187.

    Google Scholar 

  101. Wang, L., Shi, X., and Jiang, G., 2012, Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 333–334, 218–227.

    Google Scholar 

  102. Wedepohl, K.H., 1971, Environmental influences on the chemical composition of shales and clays. Physics and Chemistry of the Earth, 8, 307–333.

    Google Scholar 

  103. Wedepohl, K.H., 1991, Chemical-composition and fractionation of the continental-crust. Geologische Rundschau, 80, 207–223.

    Google Scholar 

  104. Widodo, S., Oschmann, W., Bechtel, A., Sachsenhofer, R., Anggayana, K., and Puettmann, W., 2010, Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia): implications for paleoenvironmental conditions. International Journal of Coal Geology, 81, 151–162.

    Google Scholar 

  105. Wignall, P. and Myers, K., 1988, Interpreting benthic oxygen levels in mudrocks: a new approach. Geology, 16, p.452–455.

    Google Scholar 

  106. Wronkiewicz D. and Condie, K., 1987, Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochimica et Cosmochimica Acta, 51, 2401–2416.

    Google Scholar 

  107. Wronkiewicz, D. and Kent C., 1989, Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: evidence for a 3.0-Ga-old continental craton. Geochimica et Cosmochimica Acta, 53, 1537–1549.

    Google Scholar 

  108. Zhao, Z., Dai, L., and Zheng, Y., 2015, Two types of the crust-mantle interaction in continental subduction zones. Science China Earth Sciences, 58, 1269–1283.

    Google Scholar 

  109. Zhou, C. and Jiang, S., 2009, Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in South China: evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 279–286.

    Google Scholar 

Download references

Acknowledgments

The financial assistance received by first author in the form of Swiss Government Excellence Scholarship to conduct research at the University of Lausanne under grant N° 2015.0646 of the Federal Commission for Scholarships for Foreign Students (FCS), is acknowledged. The authors are grateful for help of National Civil Engineering Laboratory (LABOGENIE) for the drill core sampling help in the field. We warmly thank Dr. Jean-Pierre Suc (ISTeP) for help in determination of some pollen species. We acknowledge the different laboratory staffs, specially Jean-Claude Lavanchy and Tiffany Monnier in ISTE of the University of Lausanne as well as ALS staff, for technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to André Mbabi Bitchong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mbabi Bitchong, A., Adatte, T., Ngon Ngon, G. et al. Palynology, mineralogy and geochemistry of sediments in Tondè locality, northern part of Douala sub-basin, Cameroon, Central Africa: implication on paleoenvironment. Geosci J (2020). https://doi.org/10.1007/s12303-020-0021-z

Download citation

Key words

  • Douala sub-basin
  • Pleistocene-Holocene age deposits
  • equatorial climate
  • pyrite occurrences
  • clay minerals
  • Cameroon