Skip to main content
Log in

Early Cretaceous diorites in the Kenbale Cu mineralization occurrence, Tibet, China, and its geological significance

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

The Kenbale Cu mineralization occurrence related to the diorite is a newly discovered Cu mineralization event in the Bangong-Nujiang metallogenic belt, Tibet, China. The Cu mineralization is hosted in the contact between the monzogranite or biotite quartz diorite and the fine-grained diorite, which is the mineralization related intrusion. In order to constrain the Kenbale mineralization age, petrogenesis and tectonic setting, we conducted LA-ICP-MS zircon U-Pb dating and Hf isotopic analyses of the biotite quartz diorite and fine-grained diorite and also the whole-rock geochemical study of the biotite quartz diorite. Zircon UPb dating show that weighted mean 206Pb/238U ages of the biotite quartz diorite and fine-grained diorite are 123.5 ± 1.9 Ma (MSWD = 2.3, n = 16) and 118.9 ± 1.3 Ma (MSWD = 2.5, n = 18), respectively. The biotite quartz diorite is a high-K calc-alkaline I-type magma rock and was controlled mainly by partial melting process during the magma formation and evolution. This intrusion is characterized by positive εHf(t) values (2.6 to 5.8) and old Hf crustal model ages (813 to 1016 Ma), indicating that the magma was sourced from partial melting of the Mesoproterozoic to Neoproterozoic juvenile crust of the northern Lhasa Terrane. Compared with the biotite quartz diorite, the mineralization associated fine-grained diorite has much higher zircon εHf(t) values (8.2 to 11.4) and younger Hf crustal model ages (450 to 650 Ma). These characteristics are similar with those of the coeval magmatic rocks induced by slab break-off of the southward subducted Bangong-Nujiang Ocean. The geochronology and geochemical results show that the Kenbale Cu mineralization was controlled by the slab break-off of the southward subducted Bangong-Nujiang Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allègre, C.J. and Minster, J.F., 1978, Quantitative models of trace element behavior inmagmatic processes. Earth and Planetary Science Letters, 38, 1–25.

    Article  Google Scholar 

  • Allègre, C.J., Courtillot, V., Tapponnier, P., Hirn, A., Mattauer, M., Coulon, C., Jaeger, J.J., Achache, J., Schärer, J., Marcoux, J., Burg, J.P., Girardeau, J., Armijo, R., Gariépy, C., Göpel, C., Li, T.D., Xiao, X.C., Chang, C.F., Li, G.Q., Lin, B.Y., Teng, J.W., Wang, N.W., Chen, G.M., Han, T.L., Wang, X.B., Deng, W.M., Sheng, H.B., Cao, Y.G., Zhou, J., Qiu, H.R., Bao, P.S., Wang, S.C., Wang, B.X., Zhou, Y.X., and Xu, R.H., 1984, Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307, 17–22.

    Article  Google Scholar 

  • Belousova, E.A., Griffin, W.L., Suzanne, Y.O.R., and Fisher, N.L., 2002, Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143, 602–622.

    Article  Google Scholar 

  • Chen, X.H., Seitmuratova, E., Wang, Z.H., Chen, Z.L., Han, S.Q., Li, Y., Yang, Y., Ye, B.Y., and Shi, W., 2014, SHRIMP U-Pb and Ar-Ar geochronology of major porphyry and skarn Cu deposits in the Balkhash Metallogenic Belt, Central Asia, and geological implications. Journal of Asian Earth Sciences, 79, 723–740.

    Article  Google Scholar 

  • Chappell, B.W., 1999, Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos, 46, 535–551.

    Article  Google Scholar 

  • Chappell, B.W. and White, A.J.R., 2001, Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48, 489–499.

    Article  Google Scholar 

  • Corfu, F., Hanchar, J.M., Hoskin, P.W.O., and Kinny, P., 2003, Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53, 469–500.

    Article  Google Scholar 

  • Dewey, J.F., Shackleton, R.M., Chang, C.F., and Sun, Y.Y., 1988, The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 327, 379–413.

    Article  Google Scholar 

  • Diwu, C.R., Sun, Y., Guo, A.L., Wang, H.L., and Liu, X.M., 2011, Crustal growth in the North China Craton at ~2.5 Ga: evidence from in situ zircon U-Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfeng complex. Gondwana Research, 20, 149–170.

    Article  Google Scholar 

  • Ding, S., Chen, Y.C., Tang, J.X., Zheng, W.B., Lin, B., and Yang, C., 2017, Petrogenesis and tectonics of the Naruo porphyry Cu(Au) deposit related intrusion in the Duolong area, central Tibet. Acta Geologica Sinica (English Edition), 91, 581–601.

    Article  Google Scholar 

  • Geng, Q.R., Zhang, Z., Peng, Z.M., Guan, J.L., Zhu, X.P., and Mao, X.C., 2016, Jurassic-Cretaceous granitoids and related tectono-metallogenesis in the Zapug-Duobuza arc, western Tibet. Ore Geology Reviews, 77, 163–175.

    Article  Google Scholar 

  • Kapp, P., Yin, A., Harrison, T.M., and Ding, L., 2005, Cretaceous-Tertiary shorting, basin development, and volcanism in central Tibet. The Geological Society of America Bulletin, 117, 865–878.

    Article  Google Scholar 

  • Kapp, P., DeCelles, P.G., Gehrels, G.E., Heizler, M., and Ding, L., 2007, Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. The Geological Society of America Bulletin, 119, 917–932.

    Article  Google Scholar 

  • Kay, R.W., 1980, Volcanic arc magmas: implications of a melting-mixing model for element recycling in the crust-upper mantle system. The Journal of Geology, 88, 497–522.

    Article  Google Scholar 

  • Leier, A.L., Decelles, P.G., Kapp, P., and Gehrels, G.E., 2007, Lower Cretaceous strata in the Lhasa Terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan Plateau. Journal of Sedimentary Research, 77, 809–825.

    Article  Google Scholar 

  • Li, C., 2008, A review on 20 years’ study of the Longmu Co-Shuanghu-Lancang rivers suture zone in Qinghai-Xizang (Tibet) Plateau. Geological Review, 54, 105–119. (in Chinese with English abstract)

    Google Scholar 

  • Li, G.M., Duan, Z.M., Liu, B., Zhang, H., Dong, S.L., and Zhang, L., 2011, The discovery of Jurassic accretionary complexes in Duolong area northern Bangong Co-Nujiang suture zone, Tibet, and its geologic significance. Geological Bulletin of China, 30, 1256–1260. (in Chinese with English abstract)

    Google Scholar 

  • Li, J.X., Qin, K.Z., Li, G.M., Noreen, J.E., Zhao, J.X., Cao, M.J., and Huang, F., 2016, The Nadun Cu-Au mineralization, central Tibet: root of a high sulfidation epithermal deposit. Ore Geology Reviews, 78, 371–387.

    Article  Google Scholar 

  • Li, J.X., Qin, K.Z., Li, G.M., Xiao, B., Zhao, J.X., and Chen, L., 2014a, Petrogenesis of Cretaceous igneous rocks from the Duolong porphyry Cu-Au deposit, central Tibet: evidence from zircon U-Pb geochronology, petrochemistry and Sr-Nd-Pb-Hf isotope characteristics. Geological Journal, 51, 285–307.

    Article  Google Scholar 

  • Li, J.X., Qin, K.Z., Li, G.M., Richards, J.P., Zhao, J.X., and Cao, M.J., 2014b, Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet: petrogenetic and tectonic implications. Lithos, 198–199, 77–91.

    Article  Google Scholar 

  • Li, X.K., Li, C., Sun, Z.M., and Wang, M., 2017, Origin and tectonic setting of the giant Duolong Cu-Au deposit, South Qiangtang Terrane, Tibet: evidence from geochronology and geochemistry of Early Cretaceous intrusive rocks. Ore Geology Reviews, 80, 61–78.

    Article  Google Scholar 

  • Lin, B., Tang, J.X., Chen, Y.C., Song, Y., Greg, H., Wang, Q., Yang, C., Fang, X., Duan, J.L., Yang, H.H., Liu, Z.B., Wang, Y.Y., and Feng, J., 2017, Geochronology and genesis of the Tiegelongnan porphyry Cu(Au) deposit in Tibet: evidence from U-Pb, Re-Os dating and Hf, S, and H-O isotopes. Resource Geology, 67, 1–21.

    Article  Google Scholar 

  • Liu, Y., Zhang, R.Q., Zhang, Z.Y., Shi, G.H., Zhang, Q.C., Abuduwayiti, M., and Liu, J.H., 2015, Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite: implications for the genesis of a magnesian skarn deposit. Lithos, 212–215, 128–144.

    Article  Google Scholar 

  • Ludwig, K.R., 2003, User’s manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4, 74 p.

    Google Scholar 

  • Maniar, P.D. and Piccoli, P.M., 1989, Tectonic discrimination of granitoids. The Geological Society of American Bulletin, 101, 635–643.

    Article  Google Scholar 

  • Pan, G.T. and Ding, J., 2004, Geological map (1:1,500,000) of Qinghai-Xizang (Tibetan) Plateau and adjacent areas. Chengdu Cartographic Publishing House, Chengdu.

    Google Scholar 

  • Pan, G.T., Ding, J., Yao, D.S., and Wang, L.Q., 2004, Guidebook of 1:500,000 geologic map of the Qinghai-Xizang (Tibet) plateau and adjacent areas. Cartographic Publishing House, Chengdu, 148 p.

    Google Scholar 

  • Pan, G.T., Mo, X.X., Hou, Z.Q., Zhu, D.C., Wang, L.Q., Li, G.M., Zhao, Z.D., Geng, Q.R., and Liao, Z.L., 2006, Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22, 521–533. (in Chinese with English abstract)

    Google Scholar 

  • Pearce, J., Harris, H.B.W., and Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983.

    Article  Google Scholar 

  • Perfit, M., Gust, D., Bence, A.E., Arculus, R., and Taylor, S., 1980, Chemical characteristics of island-arc basalts: Implications for mantle sources. Chemical Geology, 30, 227–256.

    Article  Google Scholar 

  • Rollinson, H.R., 1993, Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical, Essex, 352 p.

    Google Scholar 

  • Sun, S.S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D. and Norry, M.J. (eds.), Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42, p. 313–345.

    Google Scholar 

  • Tang, J.X., Song, Y., Wang, Q., Lin, B., Yang, C., Guo, N., Fang, X., Yang, H.H., Wang, Y.Y., Gao, K., Ding, S., Zhang, Z., Duan, J.L., Chen, H.Q., Su, D.K., Feng, J., Liu, Z.B., Wei, S.G., He, W., Song, J.L., Li, Y.B., and Wei, L.J., 2016, Geological characteristics and exploration model of the Tiegelongnan Cu(Au-Ag) deposit: the first ten million tons metal resources of a porphyry-epithermal deposit in Tibet. Acta Geoscientica Sinica, 37, 663–690. (in Chinese with English abstract)

    Google Scholar 

  • Xu, R.H., Schärer, U., and Allègre, C.J., 1985, Magmatism and metamorphism in the Lhasa block (Tibet): a geochronological study. Journal of Geology, 93, 41–57.

    Article  Google Scholar 

  • Wang, D.S., Wang, T., Yan, J., and Lin, X., 2018, Petrogenesis and tectonic implications of early Palaeozoic igneous rocks of the western South Qilian Belt, central China. International Geology Review, 60, 844–864.

    Article  Google Scholar 

  • Wei, S.G., Tang, J.X., Song, Y., Liu, Z.B., Feng, J., and Li, Y.B., 2017, Early Cretaceous bimodal volcanism in the Duolong Cu mining district, western Tibet: record of slab breakoff that triggered ca. 108–113Ma magmatism in the western Qiangtang terrane. Journal of Asian Earth Sciences, 138, 588–607.

    Article  Google Scholar 

  • Wei, S.G., Yang, S., Tang, J.X., Liu, Z.B., Wang, Q., Lin, B., Feng, J., Hou, L., Danzhen, W.X., 2018, Geochronology, geochemistry, Sr-Nd-Hf isotopic compositions, and petrogenetic and tectonic implications of Early Cretaceous intrusions associated with the Duolong porphyry-epithermal Cu-Au deposit, central Tibet. International Geology Review, 60, 1116–1139.

    Article  Google Scholar 

  • Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.P., Greenwood, R.C., Hilton, R., Kita, N., Mason, P.R.D., Norman, M., Ogasawara, M., Piccoli, R., Rhede, D., Satoh, H., Schulz-Dobric, B., Skar, O., Spicuzza, M.J., Terada, K., Tindle, A., Togashi, S., Venemann, T., Xie, Q., and Zheng, Y.F., 2004, Further characterization of the 91500 zircon crystal. Geostandards and Geoanalytical Research, 28, 9–39.

    Article  Google Scholar 

  • Wu, Y.B., Zheng, Y.F., Zhao, Z.F., Gong, B., Liu, X.M., and Wu, F.Y., 2006, U-Pb, Hf and O isotope evidence for two episodes of fluidassisted zircon growth in marble hosted eclogites from the Dabie orogeny. Geochimica et Cosmochimica Acta, 70, 3743–3761.

    Article  Google Scholar 

  • Yin, A. and Harrison, T.M., 2000, Geologic evolution of the Himalayan-Tibetan orogeny. Annual Review of Earth and Planetary Sciences, 28, 211–280.

    Article  Google Scholar 

  • Yin, J.X., Xu, J.T., Liu, C.J., and Li, H., 1988, The Tibetan Plateau: regional stratigraphic context and previous work. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 327, 5–52.

    Article  Google Scholar 

  • Zhang, K.J., Xia, B.D., Wang, G.M., Li, Y.T., and Ye, H.F., 2004, Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. Geological Society of America Bulletin, 116, 1202–1222.

    Article  Google Scholar 

  • Zhu, D.C., Li, S.M., Cawood, P.A., Wang, Q., Zhao, Z.D., Liu, S.A., and Wang, L.Q., 2016, Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245, 7–17.

    Article  Google Scholar 

  • Zhu, D.C., Zhao, Z.D., Niu, Y.L., Dilek, Y., Hou, Z.Q., and Mo, X.X., 2013, The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23, 1429–1454.

    Article  Google Scholar 

  • Zhu, D.C., Zhao, Z.D., Niu, Y.L., Mo, X.X., Chung, S.L., Hou, Z.Q., Wang, L.Q., and Wu, F.Y., 2011, The Lhasa Terrane: Reocrd of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301, 241–255.

    Article  Google Scholar 

  • Zhu, D.C., Mo, X.X., Niu, Y.L., Zhao, Z.D., Wang, L.Q., Liu, Y.S., and Wu, F.Y., 2009, Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 268, 298–312.

    Article  Google Scholar 

  • Zhu, X.P., Li, G.M., Chen, H.A., Ma, D.F., Zhang, H., Zhang, H., Liu, C.Q., Wei, L.J., 2017, Petrogenesis and metallogenic setting of porphyries of the Duobuza porphyry Cu-Au deposit, central Tibet, China. Ore Geology Reviews, 89, 858–875.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, Y., Danzhen, W. et al. Early Cretaceous diorites in the Kenbale Cu mineralization occurrence, Tibet, China, and its geological significance. Geosci J 23, 219–233 (2019). https://doi.org/10.1007/s12303-018-0029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-018-0029-9

Key words

Navigation