Skip to main content
Log in

Geochemistry of mudrock units from the Meso-Cenozoic Algarve Basin, Portugal

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

Geochemistry of mudrock units deposited in the sedimentary basin of Algarve (South Portugal) during Mesozoic and Cenozoic depositional cycles were studied, aiming a better knowledge of the evolution of the Basin. Two types of mudrock units were found: (i) silicic and Ca-poor (Cretaceous and Cenozoic), and (ii) calcareous (Middle–Upper Jurassic Ca-rich mudrock units and Upper Triassic to Lower Jurassic Mg-rich redbeds). LILE appear to be controlled by a K-bearing phyllosilicate, which is consistent with the abundant illite in the redbeds. Positive trends of: (i) Sc, Cr, Th, LREE with Al2O3 suggests their incorporation in clay minerals, and (ii) HREE with TiO2, Zr and Hf point to their presence in heavy minerals. The source area of the Algarve mudrock units was dominated by felsic rocks; features typical of a mafic source occur in some Upper Triassic to Lower Jurassic samples. Carboniferous metasediments of the basement were probably the first order source for the Algarve sedimentary basin. A more severe weathering in the Cenozoic and Cretaceous mudrock units occurred, whereas diagenetic enrichment in potassium is observed in the Upper Triassic to Lower Jurassic continental redbeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anders, E. and Grevesse, N., 1989, Abundances of the elements: meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197–214.

    Article  Google Scholar 

  • Bahlburg, H. and Dobrzinski, N., 2011, A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions. In: Arnaud, E., Halverson, G.P., and Shields, G.A. (eds.), The Geological Record of Neoproterozoic Glaciations. Geological Society of London, Memoir, Chapter 6, 36, p. 81–92.

    Google Scholar 

  • Bauluz, B., Mayayo, M.J., Fernandez-Nieto, C., and Gonzalez Lopez, J.M., 2000, Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chemical Geology, 168, 135–150.

    Article  Google Scholar 

  • Campos Alvarez, N.O. and Roser, B.P., 2007, Geochemistry of black shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: source weathering, provenance, and tectonic setting. Journal of South American Earth Sciences 23, 271–289.

    Article  Google Scholar 

  • Cavalcante, F., Fiore, S., Piccarreta, G., and Tateo, F., 2003, Geochemical and mineralogical approaches to assessing provenance and deposition of shales: a case study. Clay Minerals, 38, 383–397.

    Article  Google Scholar 

  • Chen, J., Gaillardet, J., Bouchez, J., Louvat, P., and Wang, Y., 2014, Anthropophile elements in river sediments: overview from the Seine River, France. Geochemistry, Geophysics, Geosystems, 15, 4526–4546.

    Article  Google Scholar 

  • Condie, K.C., 1993, Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology, 104, 1–37.

    Article  Google Scholar 

  • Cullers, R.L., 1995, The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in Wet Mountains region, Colorado, USA. Chemical Geology, 123, 107–131.

    Article  Google Scholar 

  • Cullers, R.L., Bock, B., and Guidotti, C., 1997, Elemental distributions and neodymium isotopic compositions of Silurian metasediments, Western Maine, USA–redistribution of the rare-earth elements. Geochimica et Cosmochimica Acta, 61, 1847–1861.

    Article  Google Scholar 

  • Cullers, R.L., 2000, The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51, 181–203.

    Article  Google Scholar 

  • Fedo, C.M., Nesbitt, H.W., and Young, G.M., 1995, Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924.

    Article  Google Scholar 

  • Gouveia, M.A., Prudêncio, M.I., Morgado, I., and Cabral, J.M.P., 1992, New data on the GSJ reference rocks JB-1a and JG-1a by instrumental neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 158, 115–120.

    Article  Google Scholar 

  • Harnois, L., 1988, The CIW index: a new chemical index of weathering. Sedimentary Geology, 55, 319–322.

    Article  Google Scholar 

  • Hassan, S., Ishiga, H., Roser, B.P., Dozen, K., and Naka, T., 1999, Geochemistry of Permian–Triassic shales in the Salt Range, Pakistan: implication for provenance and tectonism at the Gondwana margin. Chemical Geology, 158, 293–314.

    Article  Google Scholar 

  • Jorge, R.C.G.S., Fernandes, P., Rodrigues, B., Pereira, Z., and Oliveira, J.T, 2013, Geochemistry and provenance of the Carboniferous Baixo Alentejo Flysch Group, South Portuguese Zone. Sedimentary Geology, 284-285, 133–148.

    Article  Google Scholar 

  • Korotev, R.L., 1996, A self-consistent compilation of elemental concentration data for 93 geochemical reference samples. Geostandards Newsletter, 20, 217–245.

    Article  Google Scholar 

  • Malick, B.M.L. and Ishiga, H., 2016, Geochemical classification and determination of maturity source weathering in beach sands of eastern San’in Coast, Tango Peninsula, and Wakasa Bay, Japan. Earth Science Research, 5, 44–56.

    Article  Google Scholar 

  • Marques, R., Dias, M.I., Prudêncio, M.I., and Rocha, F., 2011a, Upper Cretaceous clayey levels from Western Portugal (Aveiro and Taveiro regions): clay mineral and trace-element distribution. Clays and Clay Minerals, 59, 315–327.

    Article  Google Scholar 

  • Marques, R., Prudêncio, M.I., Dias, M.I., and Rocha, F., 2011b, Patterns of rare earth and other trace elements in different size fractions of clays of Campanian–Maastrichtian deposits from the Portuguese western margin (Aveiro and Taveiro Formations). Chemie der Erde-Geochemistry, 71, 337–347.

    Article  Google Scholar 

  • Martins L. and Kerrich R., 1998, Magmatismo toleítico continental no Algarve (sul de Portugal): um exemplo de contaminação crustal “in situ”. Comunicações do Instituto Geológico e Mineiro, 85, 99–116.

    Google Scholar 

  • Mason, B., 1982, Principles of Geochemistry. John Wiley and Sons Limited, New York, 329 p.

    Google Scholar 

  • McLennan, S.M., 1989, Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Mineralogical Society of America Reviews in Mineralogy, 21, 169–200.

    Google Scholar 

  • McLennan, S.M., 1993, Weathering and global denudation. Journal of Geology, 101, 295–303.

    Article  Google Scholar 

  • McLennan, S.M., Nance, W.B., and Taylor, S.R., 1980, Rare earth element- thorium correlations in sedimentary rocks, and the composition of the continental crust. Geochimica et Cosmochimica Acta, 44, 1833–1839.

    Article  Google Scholar 

  • Mongelli, G., 2004, Rare-earth elements in Oligo-Miocenic pelitic sediments from Lagonegro basin, southern Apennines, Italy: implications for provenance and source-area weathering. International Journal of Earth Sciences, 93, 612–620.

    Google Scholar 

  • Mongelli, G., Critelli, S., Perri, F., Sonnino, M., and Perrone, V., 2006, Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental redbed mudrocks, Peloritani Mountains, Southern Italy. Geochemical Journal, 40, 197–209.

    Article  Google Scholar 

  • Nesbitt, H.W., 1992, Diagenesis and metamorphism of weathering profiles, with emphasis on Precambrian paleosols. In: Martini, I.P. and Chesworth, W. (eds.), Weathering, Soils and Paleosols. Amsterdam, Elsevier, p. 127–152.

    Chapter  Google Scholar 

  • Nesbitt, H.W. and Young, G.M., 1982, Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.

    Article  Google Scholar 

  • Nesbitt, H.W. and Young, G.M., 1984, Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 1523–1534.

    Article  Google Scholar 

  • Nesbitt, H.W. and Young, G.M., 1989, Formation and diagenesis of weathering profiles. The Journal of Geology, 97, 129–147.

    Article  Google Scholar 

  • Nesbitt, H.W., Young, G.M., McLennan, S.M., and Keays, R.R., 1996, Effects of chemical weathering and sorting on petrogenesis of siliciclastic sediments, with implications for provenance studies. The Journal of Geology, 104, 525–542.

    Article  Google Scholar 

  • Perri, F. and Otha, T., 2014, Paleoclimatic conditions and paleoweathering processes on Mesozoic continental redbeds from Western-Central Mediterranean Alpine Chains. Palaeogeography, Palaeoclimatology, Palaeoecology, 395, 144–157.

    Article  Google Scholar 

  • Perri, F., Critelli, S., Martìn-Algarra, A., Martìn-Martìn, M., Perrone, V., Mongelli, G., and Zattin, M., 2013, Triassic redbeds in the Malaguide Complex (Betic Cordillera–Spain): petrography, geochemistry, and geodynamic implications. Earth-Science Reviews, 117, 1–28.

    Article  Google Scholar 

  • Prudêncio, M.I. and Cabral, J.M.P., 1988, Rare earths and other trace elements in Cretaceous clays from central Portugal. Journal of Radioanalytical and Nuclear Chemistry, 123, 309–320.

    Article  Google Scholar 

  • Prudêncio, M.I., Sequeira Braga, M.A., Oliveira, F., Dias, M.I., Delgado, M., and Martins, M., 2006, Raw material sources for the Roman Bracarense ceramics (NW Iberian Peninsula). Clays and Clay Minerals, 54, 638–649.

    Article  Google Scholar 

  • Prudêncio, M.I., Dias, M.I., Ruiz, F., Waerenborgh, J.C., Duplay, J., Marques, R., Franco, D., Ben Ahmed, R., Gouveia, M.A., and Abad, M., 2010, Soils in the semi-arid area of the El Melah Lagoon (NE Tunisia)–variability associated with a closing evolution. Catena, 80, 9–22.

    Article  Google Scholar 

  • Prudêncio, M.I., Dias, M.I., Waerenborgh, J.C., Ruiz, F., Trindade, M.J., Abad, M., Marques, R., and Gouveia, M.A., 2011, Rare earth and other trace and major elemental distribution in a pedogenic calcrete profile (Slimene, NE Tunisia). Catena, 87, 147–156.

    Article  Google Scholar 

  • Rollinson, H., 1993, Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, Harlow, 352 p.

    Google Scholar 

  • Roser, B.P. and Korsch, R.J., 1999, Geochemical characterization, evolution and source of a Mesozoic accretionary wedge: the Torlesse terrane, New Zealand. Geological Magazine, 136, 493–512.

    Article  Google Scholar 

  • Roser, B.P., 2000, Whole-rock geochemical studies of clastic sedimentary suites. Memoirs of the Geological Society of Japan, 57, 73–89.

    Google Scholar 

  • Rudnick, R.L. and Gao, S., 2005, The Composition of the continental crust. In: Holland, H.D. and Turekian, K.K. (eds.), Treatise on the Geochemistry: The Crust, Vol. 3. Elsevier, Oxford, p. 1–64.

    Google Scholar 

  • Sanjurjo-Sánchez, J., Trindade, M.J., Blanco-Rotea, R., Benavides Garcia, R., Fernández Mosquera, D., Burbidge, C., Prudêncio, M.I., and Dias, M.I., 2010, Chemical and mineralogical characterization of historic mortars from the Santa Eulalia de Bóveda temple, NW Spain. Journal of Archaeological Science, 37, 2346–2351.

    Article  Google Scholar 

  • Taylor, S.R. and McLennan, S.M., 1985, The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford, 312 p.

    Google Scholar 

  • Terrinha, P., 1998, Structural geology and tectonic evolution of the Algarve Basin, South Portugal. Ph.D. Thesis, Imperial College, London, 876 p.

    Google Scholar 

  • Trindade, M.J., Rocha, F., and Dias, M.I., 2010, Geochemistry and mineralogy of clays from the Algarve Basin, Portugal: a multivariate approach to palaeoenvironmental investigations. Current Analytical Chemistry, 6, 43–52.

    Article  Google Scholar 

  • Trindade, M.J., Rocha, F., Dias, M.I., and Prudêncio, M.I., 2013, Mineralogy and grain-size distribution of clay-rich rock units of Algarve Basin (South Portugal). Clay Minerals, 48, 59–83.

    Article  Google Scholar 

  • Varga, A., Szakmány, G., Árgyelán, T., Józsa, S., Raucsik, B., and Máthé, Z., 2007, Complex examination of the Upper Paleozoic siliciclastic rocks from southern Transdanubia, SW Hungary–mineralogical, petrographic, and geochemical study. In: Arribas, J., Critelli, S., and Johnsson, M.J. (eds.), Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry. The Geological Society of America, Special Paper, 420, p. 222–240.

    Google Scholar 

  • Veizer, J. and Mackenzie, F.T., 2005, Evolution of sedimentary rocks. In: Holland, H.D. and Turekian, K.K. (eds.), Treatise on Geochemistry, Vol. 7. Elsevier, p. 369–407.

    Google Scholar 

  • Wronkiewicz, D.J. and Condie, K.C., 1987, Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: sourcearea weathering and provenance. Geochimica et Cosmochimica Acta, 51, 2401–2416.

    Article  Google Scholar 

  • Young, G.M. and Nesbitt, H.W., 1998, Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. Journal of Sedimentary Research, Section A: Sedimentary Petrology and Processes, 68, 448–455.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trindade, M.J., Dias, M.I., Rocha, F. et al. Geochemistry of mudrock units from the Meso-Cenozoic Algarve Basin, Portugal. Geosci J 22, 733–749 (2018). https://doi.org/10.1007/s12303-017-0085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-017-0085-6

Key words

Navigation