Advertisement

Geosciences Journal

, Volume 22, Issue 4, pp 641–651 | Cite as

Use of airborne hyperspectral and gamma-ray spectroscopy data for mineral exploration at the Sarfartoq carbonatite complex, southern West Greenland

  • Enton Bedini
  • Thorkild M. Rasmussen
Article
  • 430 Downloads

Abstract

The Sarfartoq carbonatite complex occurs in the transition zone between Archaean and Paleoproterozoic gneisses in southern West Greenland. The Sarfartoq carbonatite complex hosts ore deposits and occurrences of rare earth elements and niobium. In this study, airborne HyMap hyperspectral imagery and coincident airborne gamma-ray spectroscopy data were analysed for mineral exploration of Sarfartoq carbonatite complex. The study area included the carbonatite core zone and a hydrothermally altered shear zone prospective for rare earth elements mineralization in the southern margin of the carbonatite complex. The analysis of the hyperspectral imagery was focused on the mapping of the spatial distribution of carbonatite, fenite and limonite. Significant anomalies of uranium, thorium and potassium were outlined from the gamma-ray spectroscopy data. Decision trees were used to combine the results from the hyperspectral image analysis and airborne gamma-ray spectroscopy. Significant anomalies of thorium at the hydrothermally altered shear zone coinciding with the presence of carbonatite rocks are generally indicative of outcropping rare earth element mineralization. The study indicates the benefits of coincident airborne hyperspectral and gamma-ray spectroscopy surveys for the mineral exploration of carbonatite complexes.

Key words

hyperspectral imagery gamma-ray spectroscopy carbonatite mineral exploration Greenland 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ager, C.M. and Milton, N.M., 1987, Spectral reflectance of lichens and their effects on the reflectance of rock substrates. Geophysics, 52, 898–906.CrossRefGoogle Scholar
  2. Allaart, J.H., 1982, Geological Map of Greenland 1:500 000. Sheet 2, Frederikshåb Isblink–Søndre Strømfjord. Geological Survey of Greenland. Copenhagen, Denmark.Google Scholar
  3. Barnes, G.B., 2001, Sarfartoq, Exploration License 25/96. Internal report, New Millenium Resources NL., March 2001, 9 p.Google Scholar
  4. Bedini, E., 2011, Mineral mapping in the Kap Simpson complex, central East Greenland using HyMap and ASTER remote sensing data. Advances in Space Research, 47, 60–73.CrossRefGoogle Scholar
  5. Bedini, E., 2009, Mapping lithology of the Sarfartoq carbonatite complex, southern west Greenland, using HyMap imaging spectrometer data. Remote Sensing of Environment, 113, 1208–1219.CrossRefGoogle Scholar
  6. Calvin, W.M. and Pace, E.L., 2016, Utilizing HyspIRI prototype data for geological exploration applications: a southern California case study. Geosciences, 6, 11.CrossRefGoogle Scholar
  7. Cocks, T., Jensen, R., Stewart, W.I., and Shields, T., 1998, The HyMap airborne hyperspectral sensor: the system, calibration and performance. Proceedings of the 1st EARSeL Workshop on Imaging Spectroscopy, Zurich, Oct. 6–8, p. 37–43.Google Scholar
  8. Dickson, B.L. and Scott, K.M., 1997, Interpretation of aerial gamma-ray surveys–adding the geochemical factors. AGSO Journal of Australian Geology & Geophysics, 17, 187–200.Google Scholar
  9. Druecker, M. and Simpson, R.G., 2011, Advanced technical report on the Sarfartoq project West Greenland. Prepared for Hudson Resources Inc. 108 p.Google Scholar
  10. Grütter, H.S. and Tuer, J., 2009, Constraints on deep mantle tenor of Sarfartoq-area kimberlites (Greenland), based on modern thermobarometry of mantle derived xenocrysts. Lithos, 112S, 124–129.CrossRefGoogle Scholar
  11. Jones, A.P., Genge, M., and Carmody, L., 2013, Carbonate melts and carbonatites. Reviews in Mineralogy & Geochemistry, 75, 289–322.CrossRefGoogle Scholar
  12. Kim, K.E., 2016, Study on improving hyperspectral target detection by target signal exclusion in matched filtering. Korean Journal of Remote Sensing, 31, 433–440.CrossRefGoogle Scholar
  13. Knipling, E.B., 1970, Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment, 1, 155–159.CrossRefGoogle Scholar
  14. Mars, J.C. and Rowan, L.C., 2011, ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere, 7, 276–289.CrossRefGoogle Scholar
  15. Mazhari, N., Malekzadeh Shafaroudi, A., and Ghaderi, M., 2017, Detecting and mapping different types of iron mineralization in Sangan mining region, NE Iran, using satellite image and airborne geophysical data. Geosciences Journal, 21, 137–148.CrossRefGoogle Scholar
  16. Minty, B.R.S., 1997, Fundamentals of airborne gamma-ray spectrometry. AGSO Journal of Australian Geology & Geophysics, 17, 39–50.Google Scholar
  17. Neave, D.A., Black, M., Riley, T.R., Gibson, S.A., Ferrier, G., Wall, F., and Broom-Fendley, S., 2016, On the feasibility of imaging carbonatite- hosted rare earth element deposits using remote sensing. Economic Geology, 111, 641–665.CrossRefGoogle Scholar
  18. Porwal, A. and Carranza, E.J.M., 2015, Introduction to the special issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration. Ore Geology Reviews, 71, 477–483.CrossRefGoogle Scholar
  19. Pour, A.B. and Hashim, M., 2011, The Earth Observing-1 (EO-1) satellite data for geological mapping, southeastern segment of the Central Iranian Volcanic Belt, Iran. International Journal of the Physical Sciences, 6, 7638–7650.Google Scholar
  20. Rasmussen, T.M., Thorning, L., Riisager, P., and Tukiainen, T., 2013, Airborne geophysical data from Greenland. Geology and Ore, Geological Survey of Denmark and Greenland, 22, 12 p.Google Scholar
  21. Richter, R. and Schläpfer, D., 2002, Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: atmospheric/topographic correction. International Journal of Remote Sensing, 23, 2631–2649.Google Scholar
  22. Rivard, B. and Arvidson, R.E., 1992, Utility of imaging spectrometry for lithologic mapping in Greenland. Photogrammetric Engineering & Remote Sensing, 58, 945–949.Google Scholar
  23. Rowan, L.C., Bowers, T.L., Crowley, J.K., Anton-Pacheco, C., Gumiel, P., and Kingston, M.J., 1995, Analysis of airborne visible-infrared imaging spectrometer (AVIRIS) data of the Iron Hill, Colorado, carbonate-alkalic igneous rock complex. Economic Geology, 90, 1966–1982.CrossRefGoogle Scholar
  24. Sabins, F.F., 1999, Remote sensing for mineral exploration. Ore Geology Reviews, 14, 157–183.CrossRefGoogle Scholar
  25. Schott, J.R., 2007, Remote Sensing: The Image Chain Approach (2nd edition). Oxford University Press, New York, 688 p.Google Scholar
  26. Secher, K. and Larsen, L.M., 1980, Geology and mineralogy of Sarfartoq carbonatite complex, southern West Greenland. Lithos, 13, 199–212.CrossRefGoogle Scholar
  27. Secher, K., 1986, Exploration of the Sarfartoq carbonatite complex southern West Greenland. Rapport Grønlands Geologiske Undersøgelse, 128, 89–101.Google Scholar
  28. Simandl, G.J., 2015, Carbonatites and related exploration targets. Proceedings of the Symposium on Strategic and Critical Materials, Victoria, Nov. 13–14, p. 31–37.Google Scholar
  29. Son, Y.S., Kang, M.K., and Yoon, W.J., 2014, Pyrophyllite mapping in the Nohwa deposit, Korea, using ASTER remote sensing data. Geosciences Journal, 18, 295–305.CrossRefGoogle Scholar
  30. Tukiainen, T. and Thorning, L., 2005, Detection of kimberlitic rocks in West Greenland using airborne hyperspectral data: the Hyper- Green 2002 project. Geological Survey of Denmark and Greenland Bulletin, 7, 69–72.Google Scholar
  31. van der Meer, F.D., van der Werff, H.M.A., van Ruitenbeek, F.J.A., Hecker, C.A., Bakker, W.H., Noomen, M.F., van der Meijde. M., Carranza, E.J.M., de Smeth, J.B., and Woldai, T., 2012, Multi- and hyperspectral geologic remote sensing: a review. International Journal of Applied Earth Observation and Geoinformation, 14, 112–128.CrossRefGoogle Scholar
  32. van Ruitenbeek, F.J., Debba, P., van der Meer, F.D., Cudahy, T., van der Meijde, M., and Hale, M., 2006, Mapping white micas and their absorption wavelengths using hyperspectral band ratios. Remote Sensing of Environment, 102, 211–222.CrossRefGoogle Scholar
  33. Verplanck, P.L., van Gosen, B.S., Seal, R.R., and McCafferty, A.E., 2014, A deposit model for carbonatite and peralkaline intrusion-related rare earth element deposits. U.S. Geological Survey Scientific Investigations Report 2010–5070-J, 58 p.Google Scholar

Copyright information

© The Association of Korean Geoscience Societies and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Federal Institute for Geosciences and Natural Resources (BGR)HannoverGermany
  2. 2.Geological Survey of Denmark and Greenland (GEUS)Copenhagen KDenmark
  3. 3.Luleå University of TechnologyLuleåSweden

Personalised recommendations