Skip to main content
Log in

Use of airborne hyperspectral and gamma-ray spectroscopy data for mineral exploration at the Sarfartoq carbonatite complex, southern West Greenland

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

The Sarfartoq carbonatite complex occurs in the transition zone between Archaean and Paleoproterozoic gneisses in southern West Greenland. The Sarfartoq carbonatite complex hosts ore deposits and occurrences of rare earth elements and niobium. In this study, airborne HyMap hyperspectral imagery and coincident airborne gamma-ray spectroscopy data were analysed for mineral exploration of Sarfartoq carbonatite complex. The study area included the carbonatite core zone and a hydrothermally altered shear zone prospective for rare earth elements mineralization in the southern margin of the carbonatite complex. The analysis of the hyperspectral imagery was focused on the mapping of the spatial distribution of carbonatite, fenite and limonite. Significant anomalies of uranium, thorium and potassium were outlined from the gamma-ray spectroscopy data. Decision trees were used to combine the results from the hyperspectral image analysis and airborne gamma-ray spectroscopy. Significant anomalies of thorium at the hydrothermally altered shear zone coinciding with the presence of carbonatite rocks are generally indicative of outcropping rare earth element mineralization. The study indicates the benefits of coincident airborne hyperspectral and gamma-ray spectroscopy surveys for the mineral exploration of carbonatite complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ager, C.M. and Milton, N.M., 1987, Spectral reflectance of lichens and their effects on the reflectance of rock substrates. Geophysics, 52, 898–906.

    Article  Google Scholar 

  • Allaart, J.H., 1982, Geological Map of Greenland 1:500 000. Sheet 2, Frederikshåb Isblink–Søndre Strømfjord. Geological Survey of Greenland. Copenhagen, Denmark.

    Google Scholar 

  • Barnes, G.B., 2001, Sarfartoq, Exploration License 25/96. Internal report, New Millenium Resources NL., March 2001, 9 p.

    Google Scholar 

  • Bedini, E., 2011, Mineral mapping in the Kap Simpson complex, central East Greenland using HyMap and ASTER remote sensing data. Advances in Space Research, 47, 60–73.

    Article  Google Scholar 

  • Bedini, E., 2009, Mapping lithology of the Sarfartoq carbonatite complex, southern west Greenland, using HyMap imaging spectrometer data. Remote Sensing of Environment, 113, 1208–1219.

    Article  Google Scholar 

  • Calvin, W.M. and Pace, E.L., 2016, Utilizing HyspIRI prototype data for geological exploration applications: a southern California case study. Geosciences, 6, 11.

    Article  Google Scholar 

  • Cocks, T., Jensen, R., Stewart, W.I., and Shields, T., 1998, The HyMap airborne hyperspectral sensor: the system, calibration and performance. Proceedings of the 1st EARSeL Workshop on Imaging Spectroscopy, Zurich, Oct. 6–8, p. 37–43.

    Google Scholar 

  • Dickson, B.L. and Scott, K.M., 1997, Interpretation of aerial gamma-ray surveys–adding the geochemical factors. AGSO Journal of Australian Geology & Geophysics, 17, 187–200.

    Google Scholar 

  • Druecker, M. and Simpson, R.G., 2011, Advanced technical report on the Sarfartoq project West Greenland. Prepared for Hudson Resources Inc. 108 p.

    Google Scholar 

  • Grütter, H.S. and Tuer, J., 2009, Constraints on deep mantle tenor of Sarfartoq-area kimberlites (Greenland), based on modern thermobarometry of mantle derived xenocrysts. Lithos, 112S, 124–129.

    Article  Google Scholar 

  • Jones, A.P., Genge, M., and Carmody, L., 2013, Carbonate melts and carbonatites. Reviews in Mineralogy & Geochemistry, 75, 289–322.

    Article  Google Scholar 

  • Kim, K.E., 2016, Study on improving hyperspectral target detection by target signal exclusion in matched filtering. Korean Journal of Remote Sensing, 31, 433–440.

    Article  Google Scholar 

  • Knipling, E.B., 1970, Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment, 1, 155–159.

    Article  Google Scholar 

  • Mars, J.C. and Rowan, L.C., 2011, ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere, 7, 276–289.

    Article  Google Scholar 

  • Mazhari, N., Malekzadeh Shafaroudi, A., and Ghaderi, M., 2017, Detecting and mapping different types of iron mineralization in Sangan mining region, NE Iran, using satellite image and airborne geophysical data. Geosciences Journal, 21, 137–148.

    Article  Google Scholar 

  • Minty, B.R.S., 1997, Fundamentals of airborne gamma-ray spectrometry. AGSO Journal of Australian Geology & Geophysics, 17, 39–50.

    Google Scholar 

  • Neave, D.A., Black, M., Riley, T.R., Gibson, S.A., Ferrier, G., Wall, F., and Broom-Fendley, S., 2016, On the feasibility of imaging carbonatite- hosted rare earth element deposits using remote sensing. Economic Geology, 111, 641–665.

    Article  Google Scholar 

  • Porwal, A. and Carranza, E.J.M., 2015, Introduction to the special issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration. Ore Geology Reviews, 71, 477–483.

    Article  Google Scholar 

  • Pour, A.B. and Hashim, M., 2011, The Earth Observing-1 (EO-1) satellite data for geological mapping, southeastern segment of the Central Iranian Volcanic Belt, Iran. International Journal of the Physical Sciences, 6, 7638–7650.

    Google Scholar 

  • Rasmussen, T.M., Thorning, L., Riisager, P., and Tukiainen, T., 2013, Airborne geophysical data from Greenland. Geology and Ore, Geological Survey of Denmark and Greenland, 22, 12 p.

    Google Scholar 

  • Richter, R. and Schläpfer, D., 2002, Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: atmospheric/topographic correction. International Journal of Remote Sensing, 23, 2631–2649.

    Google Scholar 

  • Rivard, B. and Arvidson, R.E., 1992, Utility of imaging spectrometry for lithologic mapping in Greenland. Photogrammetric Engineering & Remote Sensing, 58, 945–949.

    Google Scholar 

  • Rowan, L.C., Bowers, T.L., Crowley, J.K., Anton-Pacheco, C., Gumiel, P., and Kingston, M.J., 1995, Analysis of airborne visible-infrared imaging spectrometer (AVIRIS) data of the Iron Hill, Colorado, carbonate-alkalic igneous rock complex. Economic Geology, 90, 1966–1982.

    Article  Google Scholar 

  • Sabins, F.F., 1999, Remote sensing for mineral exploration. Ore Geology Reviews, 14, 157–183.

    Article  Google Scholar 

  • Schott, J.R., 2007, Remote Sensing: The Image Chain Approach (2nd edition). Oxford University Press, New York, 688 p.

    Google Scholar 

  • Secher, K. and Larsen, L.M., 1980, Geology and mineralogy of Sarfartoq carbonatite complex, southern West Greenland. Lithos, 13, 199–212.

    Article  Google Scholar 

  • Secher, K., 1986, Exploration of the Sarfartoq carbonatite complex southern West Greenland. Rapport Grønlands Geologiske Undersøgelse, 128, 89–101.

    Google Scholar 

  • Simandl, G.J., 2015, Carbonatites and related exploration targets. Proceedings of the Symposium on Strategic and Critical Materials, Victoria, Nov. 13–14, p. 31–37.

    Google Scholar 

  • Son, Y.S., Kang, M.K., and Yoon, W.J., 2014, Pyrophyllite mapping in the Nohwa deposit, Korea, using ASTER remote sensing data. Geosciences Journal, 18, 295–305.

    Article  Google Scholar 

  • Tukiainen, T. and Thorning, L., 2005, Detection of kimberlitic rocks in West Greenland using airborne hyperspectral data: the Hyper- Green 2002 project. Geological Survey of Denmark and Greenland Bulletin, 7, 69–72.

    Google Scholar 

  • van der Meer, F.D., van der Werff, H.M.A., van Ruitenbeek, F.J.A., Hecker, C.A., Bakker, W.H., Noomen, M.F., van der Meijde. M., Carranza, E.J.M., de Smeth, J.B., and Woldai, T., 2012, Multi- and hyperspectral geologic remote sensing: a review. International Journal of Applied Earth Observation and Geoinformation, 14, 112–128.

    Article  Google Scholar 

  • van Ruitenbeek, F.J., Debba, P., van der Meer, F.D., Cudahy, T., van der Meijde, M., and Hale, M., 2006, Mapping white micas and their absorption wavelengths using hyperspectral band ratios. Remote Sensing of Environment, 102, 211–222.

    Article  Google Scholar 

  • Verplanck, P.L., van Gosen, B.S., Seal, R.R., and McCafferty, A.E., 2014, A deposit model for carbonatite and peralkaline intrusion-related rare earth element deposits. U.S. Geological Survey Scientific Investigations Report 2010–5070-J, 58 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enton Bedini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedini, E., Rasmussen, T.M. Use of airborne hyperspectral and gamma-ray spectroscopy data for mineral exploration at the Sarfartoq carbonatite complex, southern West Greenland. Geosci J 22, 641–651 (2018). https://doi.org/10.1007/s12303-017-0078-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-017-0078-5

Key words

Navigation