Skip to main content
Log in

Analytical methods for geochemical monitoring of CO2 capture and storage sites

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

CO2 leakage monitoring is essential to ensure the environmental safety for CO2 capture and storage (CCS) technologies. This study aims to provide recommendations for the selection of analytical methods for monitoring of geochemical parameters at CCS sites. Five CCS sites are reviewed to investigate the changes in geochemistry following CO2 leakage. The following geochemical parameters were determined for monitoring CCS sites: alkalinity, electrical conductivity (EC), pH described as geochemical factors, and Ba, Ca, Fe, K, Mg, Mn, and Na contents, referred to as elements in this study. The international analytical methods provided by ISO, USEPA, and USGS, which are commonly used, are first compared, followed by. The considerations for selection of CCS-site-specific analytical methods were suggested, the water sample characteristics, recommended ranges, required equipment, and significant interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bastviken, D., Sundgren, I., Natchimuthu, S., Reyier, H., and Gålfalk, M., 2015, Technical Note: Cost-efficient approaches to measure carbon dioxide (CO2) fluxes and concentrations in terrestrial and aquatic environments using mini loggers. Biogeosciences, 12, 3849–3859.

    Article  Google Scholar 

  • Bielinski, A., Kopp, A., Schütt, H., and Class, H., 2008, Monitoring of CO2 plumes during storage in geological formations using temperature signals: Numerical investigation. International Journal of Greenhouse Gas Control, 2, 319–328.

    Article  Google Scholar 

  • Bijma, J., Pörtner, H.-O., Yesson, C., and Rogers, A.D., 2013, Climate change and the oceans–What does the future hold? Marine Pollution Bulletin, 74, 495–505.

  • Dethlefsen, F., Köber, R., Schäfer, D., al Hagrey, S.A., Hornbruch, G., Ebert, M., Beyer, M., Großmann, J., and Dahmke, A., 2013, Monitoring approaches for detecting and evaluating CO2 and formation water leakages into near-surface aquifers. Energy Procedia, 37, 4886–4893.

    Article  Google Scholar 

  • Elzahabi, M. and Yong, R.N., 2001, pH influence on sorption characteristics of heavy metal in the vadose zone. Engineering Geology, 60, 61–68.

    Article  Google Scholar 

  • Eurostat, 2015, Europe 2020 indicators–Climate change and energy. http://ec.europa.eu/eurostat/statistics-explained/index.php/Europe_2020_indicators_-_climate_change_and_energy. Assessed 21 March 2016.

  • Hirata, T., 2004, New reduction technique for isobaric interferences on Ba using ICP-Mass spectrometry. Journal of the Mass Spectrometry Society of Japan, 52, 171–176.

    Article  Google Scholar 

  • Hovorka, S.D., 2008, Surveillance of a geologic sequestration project: monitoring, validation, accounting GCCC (Gulf Coast Carbon Center). Digital Publication Series, #08-01.

  • Hsiung, C.-S., Andrade, J.D., Costa, R., and Ash, K.O., 1997, Minimizing interferences in the quantitative multielement analysis of trace elements in biological fluids by inductively coupled plasma mass spectrometry. Clinical Chemistry, 43, 2303–2311.

    Google Scholar 

  • Hubert, E. and Wolkersdorfer, C., 2015, Establishing a conversion factor between electrical conductivity and total dissolved solids in South African mine waters. Water SA, 41, 490–500.

    Article  Google Scholar 

  • Humez, P., Né grel, P., Lagneau, V., Lions, J., Kloppmann, W., Gal, F., Millot, R., Guerrot, C., Flehoc, C., Widory, D., and Girard, J.-F., 2014, CO2-water-mineral reactions during CO2 leakage: Geochemical and isotopic monitoring of a CO2 injection field test. Chemical Geology, 368, 11–30.

    Article  Google Scholar 

  • IPCC, 2013, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, 1535 p.

  • Jenkins, C.R., Cook, P.J., Ennis-King, J., Undershultz, J., Boreham, C., Dance, T., de Caritat, P., Etheridge, D.M., Freifeld, B.M., Hortle, A., Kirste, D., Paterson, L., Pevzner, R., Schacht, U., Sharma, S., Stalker, L., and Urosevic, M., 2012, Safe storage and effective monitoring of CO2 in depleted gas fields. Proceedings of the National Academy of Sciences, 109, E35–E41.

    Article  Google Scholar 

  • Jones, D.G., Barkwith, A.K.A.P., Hannis, S., Lister, T.R., Gal, F., Graziani, S., Beaubien, S.E., and Widory, D., 2014, Monitoring of near surface gas seepage from a shallow injection experiment at the CO2 Field Lab, Norway. International Journal of Greenhouse Gas Control, 28, 300–317.

    Article  Google Scholar 

  • Kargbo, D.M., Wilhelm, R.G., and Campbell, D.J., 2010, Natural gas plays in the marcellus shale: Challenges and potential opportunities. Environmental Science & Technology, 44, 5679–5684.

    Article  Google Scholar 

  • Keating, E.H., Hakala, J.A., Viswanathan H., Capo, R., Stewart, B., Gardiner, J., Guthrie, G., Carey, J.W., and Fessenden, J., 2011, The challenge of predicting groundwater quality impacts in a CO2 leakage scenario: Results from field, laboratory, and modeling studies at a natural analog site in New Mexico, USA. Energy Procedia, 4, 3239–3245.

    Article  Google Scholar 

  • Kharaka, Y.K., Thordsen, J.J., Kakouros, E., Ambats, G., Herkelrath, W.N., Beers, S.R., Birkholzer, J., Apps, J.A., Spycher, N.F., Zheng, L., Trautz, R.C., Rauch, H.W., and Gulickson, K.S., 2010, Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site, Bozeman, Montana. Environmental Earth Sciences, 60, 273–284.

    Article  Google Scholar 

  • Kheshgi, H., Coninck, H., and Kessels, J., 2012, Carbon dioxide capture and storage: Seven years after the IPCC special report. Mitigation and Adaptation Strategies for Global Change, 17, 563–567.

    Article  Google Scholar 

  • Kiessling, D., Schmidt-Hattenberger, C., Schuett, H., Schilling, F., Krueger, K., Schoebel, B., Danckwardt, E., Kummerow, J., and the CO2 SINK Group, 2010, Geoelectrical methods for monitoring geological CO2 storage: First results from cross-hole and surfacedownhole measurements from the CO2 sink test site at Ketzin (Germany). International Journal of Greenhouse Gas Control, 4, 816–826.

    Article  Google Scholar 

  • Leung, D.Y.C., Caramanna, G., and Maroto-Valer, M.M., 2014, An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426–443.

    Article  Google Scholar 

  • May, T.W. and Wiedmeyer, R.H., 1998, A table of polyatomic interference in ICP-MS. Atomic Spectroscopy, 19, 150–155.

    Google Scholar 

  • Miller, B., 2015, Fossil Fuel Emissions Control Technologies: Stationary Heat and Power Systems. Butterworth-Heinemann, Waltham, 514 p.

    Google Scholar 

  • Mito, S., Xue, Z., and Satoh, H., 2015, Experimental assessment of well integrity for CO2 geological storage: Batch experimental results on geochemical interactions between a CO2-brine mixture and a sandstone–cement–steel sample. International Journal of Greenhouse Gas Control, 39, 420–431.

    Article  Google Scholar 

  • NOAA, 2015, Trends in Atmospheric Carbon Dioxide. http://www.esrl.noaa.gov/gmd/ccgg/trends/(Assessed 26 March 2016).

  • Peter, A., Lamert, H., Beyer, M., Hornbruch, G., Heinrich, B., Schulz, A., Geistlinger, H., Schreiber, B., Dietrich, P, Werban, U., Vogt, C., Richnow, H.-H., Großmann, J., Dahmke, A., 2012, Investigation of the geochemical impact of CO2 on shallow groundwater: design and implementation of a CO2 injection test in Northeast Germany. Environmental Earth Sciences, 67, 335–349.

    Article  Google Scholar 

  • Pokryszka, Z., Charmoille, A., and Bentivegna, G., 2010, Development of methods for gaseous phase geochemical monitoring on the surface and in the intermediate overburden strata of geological CO2 storage sites. Oil & gas Science and Technology, 65, 653–666.

    Article  Google Scholar 

  • Romanak, K.D., Smyth, R.C., Yang, C., Hovorka, S.D., Rearick, M., and Lu, J., 2012, Sensitivity of groundwater systems to CO2: Application of a site-specific analysis of carbonate monitoring parameters at the SACROC CO2-enhanced oil field. International Journal of Greenhouse Gas Control, 6, 142–152.

    Article  Google Scholar 

  • Schulz, A., Vogt, C., Lamert, H., Peter, A., Heinrich, B., Dahmke, A., and Richnow, H.H., 2012, Monitoring of a simulated CO2 leakage in a shallow aquifer using stable carbon isotopes. Environmental Science & Technology, 46, 11243–11250.

    Article  Google Scholar 

  • Solomon, S., 2007, Carbon dioxide storage: geological security and environmental issues–Case study on the Sleipner gas field in Norway Oslo: Bellone Foundation, Oslo, 128 p.

    Google Scholar 

  • South Korea, 2000, DPRK's first national communication under the framework convention on climate change. Report 1NC-PRK01. 72 p.

    Google Scholar 

  • Spangler, L.H., Dobeck, L.M., Repasky, K.S., Nehrir, A.R., Humphries, S.D., Barr, J.L., Keith, C., Shaw, J.A., Rouse, J.H., Cunningham, A.B., Benson, S.M., Oldenburg, C.M., Lewicki, J.L., Wells, A.W., and Diehl, J.R., 2009, A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models. Environmental Earth Sciences, 60, 227–239.

    Article  Google Scholar 

  • Trautz, R.C., Pugh, J.D., Varadharajan, C., Zheng, L., Bianchi, M., Nico, P.S., Spycher, N.F., Newell, D.L., Esposito, R.A., Wu, Y., Dafflon, B., Hubbard, S.S., and Birkholzer, J.T., 2013, Effect of dissolved CO2 on a shallow groundwater system: A controlled release field experiment. Environmental Science & Technology, 47, 298–305.

    Article  Google Scholar 

  • UNOCD, 2009, Guidance for the validation of anlaytical methodology and calibration of equipment used for testing of illicit drugs in seized materials and biological specimens. ST/NAR/41, United Nations, New York, 76 p.

    Google Scholar 

  • USDOS, 2014, United States Climate Action Report 2014. 310 p.

  • van der Tuuk Opedal, N., Torsæter, M., Vrålstad, T., and Cerasi, P., 2014, Potential leakage paths along cement-formation interfaces in wellbores: implications for CO2 storage. Energy Procedia, 51, 56–64.

    Article  Google Scholar 

  • Verkerke, J.L., Williams, D.J., and Thoma, E., 2014, Remote sensing of CO2 leakage from geologic sequestration projects. International Journal of Applied Earth Observation and Geoinformation, 31, 67–77.

    Article  Google Scholar 

  • WHO, 2013, Brief guide to analytical methods for measuring lead in blood. 14 p.

    Google Scholar 

  • Xu, F., Xiang, N., Yan, J., Chen, L., Nijkamp, P., and Higano, Y., 2015, Dynamic simulation of China’s carbon emission reduction potential by 2020. Letters in Spatial and Resource Sciences, 8, 15–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hye-On Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, S., Lee, H.A. & Yoon, HO. Analytical methods for geochemical monitoring of CO2 capture and storage sites. Geosci J 21, 631–643 (2017). https://doi.org/10.1007/s12303-017-0010-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-017-0010-z

Key words

Navigation