Skip to main content
Log in

Thermal characteristics of soil and water during summer at King Sejong Station, King George Island, Antarctica

  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

Soil temperatures, water temperatures, and weather parameters were monitored at a variety of locations in the vicinity of King Sejong station, King George Island, Antarctica, during summer 2010–2011. Thermal characteristics of soil and water were analysed using time-series analyses, apparent thermal diffusivity (ATD), and active layer thickness. The temperatures of pond water and nearby seawater showed the distinctive diurnal variations and correlated strongly with solar radiation (r = 0.411–0.797). Soil temperature (0.1–0.3 m depth) also showed diurnal fluctuations that decreased with depth and were directly linked to air temperature (r = 0.513–0.783) rather than to solar radiation; correlation decreased with depth and the time lag in the response increased by 2–3 hours per 0.1 m of soil depth. Owing to the lack of snow cover, summertime soil temperature was not decoupled from air temperature. Estimated ATD was between 0.022 and 29.209 mm2/sec, showed temporal and spatial variations, and correlated strongly with soil moisture content. The maximum estimated active layer thickness in the study area was a 41–70 cm, which is consistent with values reported in the previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Hamdeh, N.H. and Reeder, R.C., 2000, Soil thermal conductivity, effects of density, moisture, salt concentration, and organic matter. Soil Science Society of America Journal, 64, 1285–1290.

    Article  Google Scholar 

  • Adlam, L.S., Balks, M.R., Seybold, C.A., and Campbell, D.I., 2010, Temporal and spatial variation in active layer depth in the McMurdo Sound Region, Antarctica. Antarctic Science, 22, 45–52.

    Article  Google Scholar 

  • Angelini, P., 1997, Correlation and spectral analysis of two hydrogeological systems in Central Italy. Hydrological Sciences Journal, 42, 425–439.

    Article  Google Scholar 

  • Bockheim, J.G., Campbell, I.B., and McLeod, M., 2007, Permafrost distribution and active-layer depths in the McMurdo Dry Valleys, Antarctica. Permafrost and Periglacial Processes, 18, 217–227.

    Article  Google Scholar 

  • Bockheim, J.G. and Hall, K.J., 2002, Permafrost, active-layer dynamics and periglacial environments of continental Antarctica. South African Journal of Science, 98, 82–90.

    Google Scholar 

  • Burgess, M., Smith, S.L., Brown, J., Romanovsky, V., and Hinkel, K., 2000, Global Terrestrial Network for Permafrost (GTN-P): permafrost monitoring contributing to global climate observations. Current Research 2000-E14, Geological Survey of Canada, p. 1–8.

    Book  Google Scholar 

  • Burn, C.R., 1998, The active layer: two contrasting definitions. Permafrost and Periglacial Processes, 9, 411–416.

    Article  Google Scholar 

  • Cho, H.K., Kim, J., Jung, Y., Lee, Y.G., and Lee, B.Y., 2008, Recent changes in downward longwave radiation at King Sejong Station, Antarctica. Journal of Climate, 21, 5764–5776.

    Article  Google Scholar 

  • Chung, H., Lee, B.Y., Chang, S-K, Kim, J.H., and Kim, Y., 2004, Ice cliff retreat and sea-ice formation observed around King Sejong Station in King George Island, West Antarctica. Ocean Polar Research, 26, 1–10.

    Google Scholar 

  • Conovitz, P.A., MacDonald, L.H., and McKnight, D.M., 2006, Spatial and temporal active layer dynamics along three glacial meltwater streams in the McMurdo Dry Valleys, Antarctica. Arctic, Antarctic and Alpine Research, 38, 42–53.

    Article  Google Scholar 

  • Farbrot, H., Hipp, T.F., Etzelmüller, B., Isaksen, K., Ødegard, R.S., Schuler, T.V., and Humlum, O., 2011, Air and ground temperature variations observed along elevation and continentality gradients in southern Norway. Permafrost and Periglacial Processes, 22, 343–360.

    Article  Google Scholar 

  • Gooseff, M.N., Barrett, J.E., Northcott, M.L., Bate, B., Hill, K.R., Zeglin, L.H., Bobb, M., and Takacs-Vesbach, C.D., 2007, Controls on the spatial dimensions of wetted hydrologic margins of two Antarctic lakes. Vadose Zone Journal, 6, 841–848.

    Article  Google Scholar 

  • Guglielmin, M., 2004, Observations on permafrost ground thermal regimes from Antarctica and the Italian Alps, and their relevance to global climate change. Global and Planetary Change, 40, 159–167.

    Article  Google Scholar 

  • Guglielmin, M., 2006, Ground surface temperature (GST), active layer and permafrost monitoring in continental Antarctica. Permafrost and Periglacial Processes, 17, 133–143.

    Article  Google Scholar 

  • Guglielmin, M., Balks, M.R., and Paetzold, R., 2003, Towards and Antarctic active layer and permafrost monitoring network. Proceedings of the 8th International Conference on Permafrost, Zurich, July 21–25, p. 337–341.

    Google Scholar 

  • Han, U. and Jung, H.C., 1994, Temperature response in the permafrost at the Sejong Station, Antarctica. Journal of the Korean Earth Science Society, 15, 170–176.

    Google Scholar 

  • Han, U., Lee, C.K., Jeong, S., Lee, B.Y., and Nam, S.H., 2006, The studies on the temperature and thermal properties of the active layer soil at the Sejong Station, Antarctica. Journal of the Geological Society of Korea, 42, 577–586.

    Google Scholar 

  • Hinkel, K.M., 1997, Estimating seasonal values of thermal diffusivity in thawed and frozen soils using temperature time series. Cold Region Science and Technology, 26, 1–15.

    Article  Google Scholar 

  • Hinkel, K.M., Outcalt, S.I., and Nelson, F.E., 1990, Temperature variation and apparent thermal diffusivity in the refreezing active layer, Toolik Lake, Alaska. Permafrost and Periglacial Processes, 1, 265–274.

    Article  Google Scholar 

  • Hinkel, K.M., Paetzold, F., Nelson, F.E., and Bockheim, J.G., 2001, Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999. Global and Planetary Change, 29, 293–309.

    Article  Google Scholar 

  • Iijima, Y., Fedorov, A.N., Park, H., Suzuki, K., Yabuki, H., Maximov, T.C., and Ohata, T., 2010, Abrupt increases in soil temperatures following increased precipitation in a permafrost region, central Lena River basin, Russia. Permafrost and Periglacial Research, 21, 30–41.

    Article  Google Scholar 

  • Ikard, S.J., Gooseff, M.N., Barrett, J.E., and Takacs-Vesbach, C., 2009, Thermal characterization of active layer across a soil moisture gradient in the McMurdo Dry Valleys, Antarctica. Permafrost and Periglacial Processes, 20, 27–39.

    Article  Google Scholar 

  • Isaksen, K., Ødegård, R.S., Etzelmüller, B., Hilbich, C., Hauck, C., Farbrot, H., Eiken, T., Hygen, H.O., and Hipp, T.F., 2011, Degrading mountain permafrost in Southern Norway: Spatial and temporal variability of mean ground temperatures, 1999–2009. Permafrost and Periglacial Processes, 22, 361–377.

    Article  Google Scholar 

  • Jeong, G.Y. and Yoon, H.I., 2001, The origin of clay minerals in soils of King George Island, South Shetlands, West Antarctica, and its implications for the clay-mineral compositions of marine sediments. Journal of Sedimentary Research, 71, 833–842.

    Article  Google Scholar 

  • Jin, H., Li, S., Cheng, G., Shaoling, W., and Li, X., 2000, Permafrost and climatic change in China. Global and Planetary Change, 26, 387–404.

    Article  Google Scholar 

  • Koo, M.H., Kim, Y., Suh, M., and Suh, M.S., 2003, Estimating thermal diffusivity of soils in Korea using temperature time series data. Journal of the Geological Society of Korea, 39, 301–317.

    Google Scholar 

  • Kim, J.H., Ahn, I.Y., Lee, K.S., Chung, H., and Choi, H.G., 2007, Vegetation of Barton Peninsular in the neighbourhood of King Sejong Station (King George Island, maritime Antarctic). Polar Biology, 30, 903–916.

    Article  Google Scholar 

  • Kowalewski, D.E., Marchant, D.R., Levy, J.S., and Head, J.W., 2006, Quantifying low rates of summertime sublimation for buried glacier ice in Beacon Valley, Antarctica. Antarctic Science, 18, 421–428.

    Article  Google Scholar 

  • Lachenbruch, A.H., 1994, Permafrost, the active layer, and changing climate. U.S. Geological Survey Open-File Report, 94-694, Menlo Park, 43 p.

    Google Scholar 

  • Larocque, M., Mangin, A., Razack, M., and Banton, O., 1998, Contribution of correlation and spectral analyses to the regional study of a karst aquifer (Charente, France). Journal of Hydrology, 205, 217–231.

    Article  Google Scholar 

  • Lee, J., Jin, Y.K., Hong, J.K., Yoo, H.J., and Shon, H., 2008, Simulation of a tidewater glacier evolution in Marian Cove, King George Island, Antarctica. Geosciences Journal, 12, 33–39.

    Article  Google Scholar 

  • Lee, J.Y. and Lee, K.K., 2000, Use of hydrologic time series data for identification of recharge mechanism in a fractured bedrock aquifer system. Journal of Hydrology, 229, 190–201.

    Article  Google Scholar 

  • Lee, J.Y., Lim, H.S., Yoon, H.I., and Park, Y., 2013, Stream water and groundwater interaction revealed by temperatures analyses in the Haean basin, Korea. Water, 5, 1677–1698.

    Article  Google Scholar 

  • Lee, Y.I., Lim, H.S., and Yoon, H.I., 2004, Geochemistry of soils of King George Island, South Shetland Islands, West Antarctica: Implications for pedogenesis in cold polar regions. Geochimica et Cosmochimica Acta, 68, 4319–4333.

    Article  Google Scholar 

  • Lim, H.S., Park, Y., Lee, J.Y., and Yoon, H.I., 2014, Geochemical characteristics of meltwater and pond water on the Barton and Weaver peninsulas of King George Island, West Antarctica. Geochemical Journal, 48, 409–422.

    Article  Google Scholar 

  • Osterkamp, T.E. and Romanovsky, V.E., 1996, Characteristics of changing permafrost temperatures in the Alaskan Arctic, U.S.A. Arctic and Alpine Research, 28, 167–273.

    Article  Google Scholar 

  • Osterkamp, T.E. and Romanovsky, V.E., 1999, Evidence for warming and thawing of discontinuous permafrost in Alaska. Permafrost and Periglacial Processes, 10, 17–37.

    Article  Google Scholar 

  • Osterkamp, T.E., 2005, The recent warming of permafrost in Alaska. Global and Planetary Change, 49, 187–202.

    Article  Google Scholar 

  • Pavlov, A.V., 1994, Current changes of climate can permafrost in the Arctic and Sub-Arctic of Russia. Permafrost and Periglacial Processes, 5, 101–110.

    Article  Google Scholar 

  • Pereira, E.B., 1990, Radon-222 time series measurements in the Antarctic peninsula (1986–1987). Tellus, 42B, 39–45.

    Article  Google Scholar 

  • Peters-Lidard, C.D., Blackburn, E., Liang, X., and Wood, E.F., 1998, The effect of soil conductivity parameterization on surface energy fluxes and temperatures. Journal of the Atmospheric Sciences, 5, 1209–1224.

    Article  Google Scholar 

  • Potter, C., 2004, Predicting climate change effect on vegetation, soil thermal dynamics, and carbon cycling in ecosystems of interior Alaska. Ecological Modeling, 175, 1–24.

    Article  Google Scholar 

  • Pringle, D.J., Dickinson, W.W., Trodahl, H.J., and Pyne, A.R., 2003, Depth and seasonal variations in the thermal properties of Antarctic Dry Valley permafrost from temperature time series analysis. Journal of Geophysical Research, 108, 2474. DOI: 10.1029/2002JB002364

    Google Scholar 

  • Ramos, M., Vieira, G., Gruber, S., Blanco, J.J., Hauck, C., Hidalgo, M.A., Tomé, D., Neves, M., and Trindade, A., 2007, Permafrost and active layer monitoring in the maritime Antarctic: Preliminary results from CALM sites on Livingston and Deception Islands.

    Google Scholar 

  • USGS OF-2007-1047, Short Research Paper 070, U.S. Geological Survey and the National Academies. DOI: 10.3133/of 2007-1047.srp070

  • Roberto, F.M.M., Carlos, E.G.R.S., Everton, L.P., Felipe, N.B.S., Elpidio, I.F.F., and James, G.B., 2012, Active layer temperature in two Cryosols from King George Island, Maritime Antarctica. Geomorphology, 155–156, 12–19.

    Google Scholar 

  • Seemann, J., 1979, Measuring technology. In: Seeman, J., Chirkov, Y.I., Lomas, J., and Primault, B. (eds.), Agrometeorology. Springer-Verlag, Berlin, p. 40–45.

    Chapter  Google Scholar 

  • Smith, M.W., 1990, Potential responses of permafrost to climatic change. Journal of Cold Regions Engineering, 41, 29–37.

    Article  Google Scholar 

  • Verhoef, A., van den Hurk, B.J.J.M., Jacobs, A.F.G., and Heusinkveld, B.G., 1996, Thermal soil properties for vineyard (EFEDA-I) and savanna (HAPEX-Sahel) sites. Agricultural and Forest Meteorology, 78, 1–18.

    Article  Google Scholar 

  • Vidal, J., Berrocoso, M., and Fernández-Ros, A., 2012, Study on tides and sea levels at Deception and Livingston islands, Antarctica. Antarctic Science, 24, 193–201.

    Article  Google Scholar 

  • Wu, Q., Zhang, T., and Liu, Y., 2010, Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Global and Planetary Change, 72, 32–38.

    Article  Google Scholar 

  • Zhang, T., Osterkamp, T.E., and Stamnes, K., 1997, Effects of climate on the active layer and permafrost on the North Slope of Alaska, USA. Permafrost and Periglacial Processes, 8, 45–67.

    Article  Google Scholar 

  • Zhang, Y., Chen, W., and Riseborough, D.W., 2008, Transient projects of permafrost distribution in Canada during the 21st century under scenarios of climate change. Global and Planetary Change, 60, 443–456.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoun Soo Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JY., Lim, H.S. & Yoon, H.I. Thermal characteristics of soil and water during summer at King Sejong Station, King George Island, Antarctica. Geosci J 20, 503–516 (2016). https://doi.org/10.1007/s12303-016-0026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-016-0026-9

Keywords

Navigation