Skip to main content
Log in

Carbonate clumped isotope paleothermometry: a review of recent advances in CO2 gas evolution, purification, measurement and standardization techniques

  • Invited Review
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

Carbonate clumped isotope paleothermometry is based upon the principle that the formation temperature of carbonates is proportional to the relative abundance of 13C18O16O in CO2 produced through carbonate acid digestion. Furthermore, the relative abundance of 13C18O16O is independent of the δ 18O value of parent water, providing a viable alternative to the classic oxygen isotope carbonate-water paleothermometer. The temperature resolution of this newly developed paleothermometer primarily relies on the analytical techniques required to determine the clumped isotope composition of a carbonate mineral. These analytical techniques involve: (1) CO2 gas evolution, in which carbonate is reacted with phosphoric acid, yielding CO2 with a clumped isotope composition proportional to the carbonate formation temperature; (2) CO2 purification, in which a rigorous purification of acid-liberated CO2 is achieved by removing contaminants; (3) clumped isotope measurement, in which a customized gas-source isotope ratio mass spectrometer quantifies the raw clumped isotope composition (Δ47) of the purified CO2 gas; and (4) inter-laboratory standardization, in which raw Δ47 values are normalized with respect to a community-accepted reference frame. This review provides an overview and comparison of the analytical techniques currently utilized in stable isotope laboratories for Δ47 measurements, specifically discussing carbonate pre-treatment techniques, phosphoric acid digestion systems, isotope and temperature effects during carbonate phosphoric acid digestion, CO2 purification processes, and the challenges associated with the measurement and standardization of the Δ47 value. Continued refinement of these analytical techniques will aid in reducing sample size, increasing sample throughput, and improving Δ47 external precision and associated paleotemperature resolution. Furthermore, these advances may assist in elucidating the source of discrepancies in slope between two groups of reported carbonate clumped isotope thermometer calibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affek, H.P., 2012, Clumped Isotope Paleothermometry: Principles, Applications, and Challenges. The Paleontological Society Papers, 18, 101–114.

    Google Scholar 

  • Bemis, B.E., Spero, H.J., Bijma, J., and Lea, W., 1998, Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature Equations. Paleoceanography, 13, 150–160.

    Article  Google Scholar 

  • Bernasconi, S.M., Hu, B., Wacker, U., Fiebig, J., Breitenbach, S.F.M., and Rutz, T., 2013, Background effects on Faraday collectors in gas-source mass spectrometry and implications for clumped isotope measurements. Rapid Communications in Mass Spectrometry, 27, 603–612.

    Article  Google Scholar 

  • ernasconi, S., the ETH clumpy team and interlaboratory calibration test participants, 2014, Interlaboratory comparison of clumped isotope measurements of 4 carbonate samples: Towards the establishment of carbonate standards for clumped isotope analysis. 4th International Workshop on Clumped Isotopes, Zürich, Aug. 24–27, p. 35.

    Google Scholar 

  • Bigeleisen, J., 1955, Statistical Mechanics of Isotopic Systems with Small Quantum Corrections. I. General Considerations and the Rule of the Geometric Mean. The Journal of Chemical Physics, 23, 2264–2267.

    Google Scholar 

  • Buchardt, B., 1978, Oxygen isotope paleotemperatures from the Tertiary period in the North Sea area. Nature, 275, 121–123.

    Article  Google Scholar 

  • Carothers, W.W., Adami, L.H., and Rosenbauer, R.J., 1988, Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite. Geochimica et Cosmochimica Acta, 52, 2445–2450.

    Article  Google Scholar 

  • Chacko, T., Cole, D.R., and Horita, J., 2001, Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Reviews in Mineralogy and Geochemistry, 43, 1–81.

    Article  Google Scholar 

  • Cole, J.E., Dunbar, R.B., McClanahan, T.R., and Muthiga, N.A., 2000, Tropical pacific forcing of decadal SST variability in the Western Indian Ocean over the past two centuries. Science, 287, 617–619.

    Article  Google Scholar 

  • Cui, L. and Wang, X., 2014, Determination of clumped isotopes in carbonate using isotope ratio mass spectrometer: Effects of extraction potential and long-term stability. International Journal of Mass Spectrometry, 372, 46–50.

    Article  Google Scholar 

  • Daëron, M., Guo, W., Eiler, J., Genty, D., Blamart, D., Boch, R., Drysdale, R., Maire, R., Wainer, K., and Zanchetta, G., 2011, 13C18O clumping in speleothems: Observations from natural caves and precipitation experiments. Geochimica et Cosmochimica Acta, 75, 3303–3317.

    Article  Google Scholar 

  • Dale, A., John, C.M., Mozley, P.S., Smalley, P.C., and Muggeridge, A.H., 2014, Time-capsule concretions: Unlocking burial diagenetic processes in the Mancos Shale using carbonate clumped isotopes. Earth and Planetary Science Letters, 394, 30–37.

    Article  Google Scholar 

  • Defliese, W.F., Hren, M.T., and Lohmann, K.C., 2015, Compositional and temperature effects of phosphoric acid fractionation on Δ47 analysis and implications for discrepant calibrations. Chemical Geology, 396, 51–60.

    Article  Google Scholar 

  • Dennis, K.J., Affek, H.P., Passey, B.H., Schrag, D.P., and Eiler, J.M., 2011, Defining an absolute reference frame for ‘clumped’ isotope studies of CO2. Geochimica et Cosmochimica Acta, 75, 7117–7131.

    Article  Google Scholar 

  • Dennis, K.J., Cochran, J.K., Landman, N.H., and Schrag, D.P., 2013, The climate of the Late Cretaceous: New insights from the application of the carbonate clumped isotope thermometer to Western Interior Seaway macrofossil. Earth and Planetary Science Letters, 362, 51–65.

    Article  Google Scholar 

  • Dennis, K.J. and Schrag, D.P., 2010, Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochimica et Cosmochimica Acta, 74, 4110–4122.

    Article  Google Scholar 

  • Dennis, P.F. and Vinen, S.J., 2009, MIRA: A new approach to measuring Δ47 in carbonates and geothermometry of MVT type deposits. European Geosciences Union General Assembly Conference (Abstract), Vienna, Apr. 19–24, p. 5540.

    Google Scholar 

  • Dickson, J.A.D. and Coleman, M.L., 1980, Changes in carbon and oxygen isotope composition during limestone diagenesis. Sedimentology, 27, 107–118.

    Article  Google Scholar 

  • Dietzel, M., Tang, J., Leis, A., and Köhler, S.J., 2009, Oxygen isotopic fractionation during inorganic calcite precipitation — Effects of temperature, precipitation rate and pH. Chemical Geology, 268, 107–115.

    Article  Google Scholar 

  • Dunbar, R.B., Wellington, G.M., Colgan, M.W., and Glynn, P.W., 1994, Eastern Pacific sea surface temperature since 1600 A.D.: the d18O record of climate variability in Galápagos corals. Paleoceanography, 9, 291–315.

    Article  Google Scholar 

  • Eagle, R.A., Schauble, E.A., Tripati, A.K., Tütken, T., Hulbert, R.C., and Eiler, J.M., 2010, Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite. Proceedings of the National Academy of Sciences of the United States of America, 107, 10377–10382.

    Article  Google Scholar 

  • Eagle, R.A., Tütken, T., Martin, T.S., Tripati, A.K., Fricke, H.C., Connely, M., Cifelli, R.L., and Eiler, J.M., 2011, Dinosaur body temperatures determined from isotopic (13C-18O) ordering in fossil biominerals. Science, 333, 443–445.

    Article  Google Scholar 

  • Eagle, R.A., Eiler, J.M., Tripati, A.K., Ries, J.B., Freitas, P.S., Hiebenthal, C., Wanamaker Jr., A.D., Taviani, M., Elliot, M., Marenssi, S., Nakamura, K., Ramirez, P., and Roy, K., 2013, The influence of temperature and seawater carbonate saturation state on 13C-18O bond ordering in bivalve mollusks. Biogeosciences, 10, 4591–4606.

    Article  Google Scholar 

  • Eiler, J.M., 2007, “Clumped-isotope” geochemistry–The study of naturally-occurring, multiply-substituted isotopologues. Earth and Planetary Science Letters, 262, 309–327.

    Article  Google Scholar 

  • Eiler, J.M., 2011, Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews, 30, 3575–3588.

    Article  Google Scholar 

  • Eiler, J.M. and Schauble, E., 2004, 18O13C16O in Earth’s atmosphere. Geochimica et Cosmochimica Acta, 68, 4767–4777.

    Article  Google Scholar 

  • Engel, A.E.J., Clayton, R.N., and Epstein, S., 1958, Variations in isotopic composition of oxygen and carbon in Leadville limestone (Mississippian, Colorado) and in its hydrothermal and metamorphic phases. The Journal of Geology, 66, 374–393.

    Article  Google Scholar 

  • Epstein, S., Buchsbaum, R., Lowenstam, H., and Urey H.C., 1951, Carbonate-water isotopic temperature scale. Bulletin of the Geological Society of America, 62, 417–426.

    Article  Google Scholar 

  • Fernandez, A., Tang, J., and Rosenheim, B.E., 2014, Siderite ‘clumped’ isotope thermometry: A new paleoclimate proxy for humid continental environments. Geochimica et Cosmochimica Acta, 126, 411–421.

    Article  Google Scholar 

  • Gascoyne, M., Schwarcz, H.P., and Ford, D.C., 1980, A paleotemperature record for the mid-Wisconsin in Vancouver Island. Nature, 285, 474–476.

    Article  Google Scholar 

  • Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E.A., Schrag, D., and Eiler, J.M., 2006, 13C-18O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70, 1439–1456.

    Article  Google Scholar 

  • Ghosh, P., Eiler, J., Campana, S.E., and Feeney, R.F., 2007, Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths. Geochimica et Cosmochimica Acta, 71, 2736–2744.

    Article  Google Scholar 

  • Grauel, A.-L., Schmid, T.W., Hu, B., Bergami, C., Capotondi, L., Zhou, L., and Bernasconi, S.M., 2013, Calibration and application of the ‘clumped isotope’ thermometer to foraminifera for high-resolution climate reconstructions. Geochimica et Cosmochimica Acta, 108, 125–140.

    Article  Google Scholar 

  • Grossman, E., 2012, Applying oxygen isotope paleothermometry in deep time. The Paleontological Society Papers, 18, 39–67.

    Google Scholar 

  • Guo, W. and Eiler, J.M., 2007, Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites. Geochimica et Cosmochimica Acta, 71, 5565–5575.

    Article  Google Scholar 

  • Guo, W., Mosenfelder, J.L., Goddard III, W.A., and Eiler, J.M., 2009, Isotopic fractionations associated with phosphoric acid digestion of carbonate minerals: Insights from first-principles theoretical modeling and clumped isotope measurements. Geochimica et Cosmochimica Acta, 73, 7203–7225.

    Article  Google Scholar 

  • Halevy, I., Fischer, W.W., and Eiler, J.M., 2011, Carbonates in the Martian meteorite Allan Hills 84001 formed at 18 ± 4 °C in a nearsurface aqueous environment. Proceedings of the National Academy of Sciences of the United States of America, 108, 16895–16899.

    Article  Google Scholar 

  • He, B., Olack, G.A., and Colman, A.S., 2012, Pressure baseline correction and high-precision CO2 clumped-isotope (Δ47) measurements in bellows and micro-volume modes. Rapid Communications in Mass Spectrometry, 26, 2837–2853.

    Article  Google Scholar 

  • Henkes, G.A., Passey, B.H., Grossman, E.L., Shenton, B.J., Pérez-Huerta, A., and Yancey, T.E., 2014, Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochimica et Cosmochimica Acta, 139, 362–382.

    Article  Google Scholar 

  • Henkes, G.A. Passey, B.H., Wanamaker Jr., A.D., Grossman, E.L., Ambrose Jr., W.G., and Carroll, M.L., 2013, Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells. Geochimica et Cosmochimica Acta, 106, 307–325.

    Article  Google Scholar 

  • Hough, B.G., Fan, M., and Passey B.H., 2014, Calibration of the clumped isotope geothermometer in soil carbonate in Wyoming and Nebraska, USA: Implications for paleoelevation and paleoclimate reconstruction. Earth and Planetary Science Letters, 391, 110–120.

    Article  Google Scholar 

  • Hu, B., Radke, J., Schlüter, H.-J., Heine, F.T., Zhou, L., and Bernasconi, S.M., 2014, A modified procedure for gas-source isotope ratio mass spectrometry: the long-integration dual-inlet (LIDI) methodology and implications for clumped isotope measurements. Rapid Communications in Mass Spectrometry, 28, 1413–1425.

    Article  Google Scholar 

  • Huntington, K.W., Eiler, J.M., Affek, H.P., Guo, W., Bonifacie, M., Yeung, L.Y., Thiagarajan, N., Passey, B., Tripati, A., Daëron M., and Came, R., 2009, Methods and limitations of ‘clumped’ CO2 isotope (?47) analysis by gas-source isotope ratio mass spectrometry. Journal of Mass Spectrometry, 44, 1318–1329.

    Article  Google Scholar 

  • Kim, S.-T. and O’Neil, J.R., 1997, Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61, 3461–3475.

    Article  Google Scholar 

  • Kim, S.-T., Hillaire-Marcel, C., and Mucci, A., 2006, Mechanisms of equilibrium and kinetic oxygen isotope effects in synthetic aragonite at 25 °C. Geochimica et Cosmochimica Acta, 70, 5790–5801.

    Article  Google Scholar 

  • Kim, S.-T., Mucci, A., and Taylor, B.E., 2007a, Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 °C: Revisited. Chemical Geology, 246, 135–146.

    Article  Google Scholar 

  • Kim, S.-T., O’Neil, J.R., Hillaire-Marcel, C., and Mucci, A., 2007b, Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochimica et Cosmochimica Acta, 71, 4704–4715.

    Article  Google Scholar 

  • Kim, S.-T., Gebbinck, C.K., Mucci, A., and Coplen, T.B., 2014, Oxygen isotope systematics in the aragonite-CO2-H2O-NaCl system up to 0.7mol/kg ionic strength at 25 °C. Geochimica et Cosmochimica Acta, 137, 147–158.

    Article  Google Scholar 

  • Kluge, T., Affek, H.P., Zhang, Y.G., Dublyansky, Y., Spötl, C., Immenhauser, A., and Richter, D.K., 2014, Clumped isotope thermometry of cryogenic cave carbonates. Geochimica et Cosmochimica Acta, 126, 541–554.

    Article  Google Scholar 

  • Lechler, A.R., Niemi, N.A., Hren, M.T., and Lohmann, K.C., 2013, Paleoelevation estimates for the northern and central proto-Basin and Range from carbonate clumped isotope thermometry. Tectonics, 32, 295–316.

    Article  Google Scholar 

  • McCrea, J.M., 1950, On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale. The Journal of Chemical Physics, 18, 849–857.

    Article  Google Scholar 

  • Meckler, A.N., Ziegler, M., Millán, M.I., Breitenbach, S.F.M., and Bernasconi, S.M., 2014, Long-term performance of the Kiel carbonate device with a correction scheme for clumped isotope measurements. Rapid Communications in Mass Spectrometry, 28, 1705–1715.

    Article  Google Scholar 

  • Miller, K.G., Fairbanks, R.G., and Mountain, G.S., 1987, Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography, 2, 1–19.

    Article  Google Scholar 

  • O’Neil, J.R., Clayton R.N., and Mayeda, T.K., 1969, Oxygen isotope fractionation in divalent metal carbonates. The Journal of Chemical Physics, 51, 5547–5558.

    Article  Google Scholar 

  • O’Neil, J.R., Adami, L.H., and Epstein S., 1975, Revised value for the O18 fractionation between CO2 and H2O at 25 °C. Journal of Research of the U.S. Geological Survey, 3, 623–624.

    Google Scholar 

  • Passey, B.H., Levin, N.E., Cerling, T.E., Brown, F.H., and Eiler, J.M., 2010, High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proceedings of the National Academy of Sciences of the United States of America, 107, 11245–11249.

    Article  Google Scholar 

  • Petersen, S.V. and Schrag, D.P., 2014, Clumped isotope measurements of small carbonate samples using a high-efficiency dualreservoir technique. Rapid Communications in Mass Spectrometry, 28, 2371–2381.

    Article  Google Scholar 

  • Petrizzo, D.A. and Young, E.D., 2014, High-precision determination of 13C-18O bonds in CO2 using multicollector peak hopping. Rapid Communications in Mass Spectrometry, 28, 1185–1193.

    Article  Google Scholar 

  • Petrizzo, D.A., Young, E.D., and Runnegar, B.N., 2014, Implications of high-precision measurements of 13C-18O bond ordering in CO2 for thermometry in modern bivalve mollusk shells. Geochimica et Cosmochimica Acta, 142, 400–410.

    Article  Google Scholar 

  • Rosenheim, B.E., Tang, J., and Fernandez, A., 2013, Measurement of multiply substituted isotopologues (‘clumped isotopes’) of CO2 using a 5 kV compact isotope ratio mass spectrometer: Performance, reference frame, and carbonate paleothermometry. Rapid Communications in Mass Spectrometry, 27, 1847–1857.

    Article  Google Scholar 

  • Saenger, C., Affek, H.P., Felis, T., Thiagarajan, N., Lough, J.M., and Holcomb, M., 2012, Carbonate clumped isotope variability in shallow water corals: Temperature dependence and growth-related vital effects. Geochimica et Cosmochimica Acta, 99, 224–242.

    Article  Google Scholar 

  • Schauble, E.A., Ghosh, P., and Eiler, J.M., 2006, Preferential formation of 13C-18O bonds in carbonate minerals, estimated using firstprinciples lattice dynamics. Geochimica et Cosmochimica Acta,70, 2510–2529.

    Article  Google Scholar 

  • Schmid, T.W. and Bernasconi, S.M., 2010, An automated method for ‘clumped isotope’ measurements on small carbonate samples. Rapid Communications in Mass Spectrometry, 24, 1955–1963.

    Article  Google Scholar 

  • Sharma, T. and Clayton, R.N., 1965, Measurement of O18/O16 ratios of total oxygen of carbonates. Geochimica et Cosmochimica Acta, 29, 1347–1353.

    Article  Google Scholar 

  • Spero, H.J., Bijma, J., Lea, D.W., and Bemis, B.E., 1997, Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature, 390, 497–500.

    Article  Google Scholar 

  • Suarez, M.B. and Passey, B.H., 2014, Assessment of the clumped isotope composition of fossil bone carbonate as a recorder of subsurface temperatures. Geochimica et Cosmochimica Acta, 140, 142–159.

    Article  Google Scholar 

  • Swart, P.K., Burns, S.J., and Leder, J.J., 1991, Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chemical Geology: Isotope Geoscience Section, 86, 89–96.

    Google Scholar 

  • Tang, J., Dietzel, M., Fernandez, A., Tripati, A.K., and Rosenheim, B.E., 2014, Evaluation of kinetic effects on clumped isotope fractionation (Δ47) during inorganic calcite precipitation. Geochimica et Cosmochimica Acta, 134, 120–136.

    Article  Google Scholar 

  • Thiagarajan, N., Adkins, J., and Eiler, J., 2011, Carbonate clumped isotope thermometry of deep-sea corals and implications for vital effects. Geochimica et Cosmochimica Acta, 75, 4416–4425.

    Article  Google Scholar 

  • Thiagarajan, N., Subhas, A.V., Southon, J.R., Eiler, J.M., and Adkins, J.F., 2014, Abrupt pre-Bølling-Allerød warming and circulation changes in the deep ocean. Nature, 511, 75–78.

    Article  Google Scholar 

  • Tripati, A.K., Eagle, R.A., Thiagarajan, N., Gagnon, A.C., Bauch, H., Halloran, P.R., and Eiler, J.M., 2010, 13C-18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths. Geochimica et Cosmochimica Acta, 74, 5697–5717.

    Article  Google Scholar 

  • Tripati, A.K., Sahany, S., Pittman, D., Eagle, R.A., Neelin, J.D., Mitchell, J.L., and Beaufort, L., 2014, Modern and glacial tropical snowlines controlled by sea surface temperature and atmospheric mixing. Nature Geoscience, 7, 205–209.

    Article  Google Scholar 

  • Urey, H.C., 1947, The thermodynamic properties of isotopic substances. Journal of the Chemical Society, 562–581.

    Google Scholar 

  • van Breukelen, M.R., Vonhof, H.B., Hellstrom, J.C., Wester, W.C.G., and Kroon, D., 2008, Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth and Planetary Science Letters, 275, 54–60.

    Article  Google Scholar 

  • Wachter, E.A. and Hayes, J.M., 1985, Exchange of oxygen isotopes in carbon dioxide-phosphoric acid systems. Chemical Geology: Isotope Geoscience Section, 52, 365–374.

    Google Scholar 

  • Wacker, U., Fiebig, J., and Schoene, B.R., 2013, Clumped isotope analysis of carbonates: comparison of two different acid digestion techniques. Rapid Communications in Mass Spectrometry, 27, 1631–1642.

    Article  Google Scholar 

  • Wacker, U., Fiebig, J., Tödter, J., Schöne, B.R., Bahr, A., Friedrich, O., Tütken., T., Gischler, E., and Joachimski, M.M., 2014, Empirical calibration of the clumped isotope paleothermometer using calcites of various origins. Geochimica et Cosmochimica Acta, 141, 127–144.

    Article  Google Scholar 

  • White, T., González, L., Ludvigson, G., and Poulsen, C., 2001, Middle Cretaceous greenhouse hydrologic cycle of North America. Geology, 29, 363–366.

    Article  Google Scholar 

  • Wang, Z., Schauble, E.A., and Eiler, J.M., 2004, Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases. Geochimica et Cosmochimica Acta, 68, 4779–4797.

    Article  Google Scholar 

  • Yoshida, N., Vasilev, M., Ghosh, P., Abe, O., Yamada, K., and Morimoto, M., 2013, Precision and long-term stability of clumped-isotope analysis of CO2 using a small-sector isotope ratio mass spectrometer. Rapid communications in mass spectrometry, 27, 207–215.

    Article  Google Scholar 

  • Yu, Z. and Eicher, U., 1998, Abrupt climate oscillations during the last deglaciation in central North America. Science, 282, 2235–2238.

    Article  Google Scholar 

  • Zaarur, S., Olack, G., and Affek, H.P., 2011, Paleo-environmental implication of clumped isotopes in land snail shells. Geochimica et Cosmochimica Acta, 75, 6859–6869.

    Article  Google Scholar 

  • Zaarur, S., Affek, H.P., and Brandon, M.T., 2013, A revised calibration of the clumped isotope thermometer. Earth and Planetary Science Letters, 382, 47–57.

    Article  Google Scholar 

  • Zeebe, R.E., 2005, Reply to the comment by P. Deines on “An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes,” by R.E. Zeebe 1999. Geochimica et Cosmochimica Acta, 69, 789–790.

    Article  Google Scholar 

  • Zheng, Y.-F., 1999, Oxygen isotope fractionation in carbonate and sulfate minerals. Geochemical Journal, 33, 109–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Tae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spencer, C., Kim, ST. Carbonate clumped isotope paleothermometry: a review of recent advances in CO2 gas evolution, purification, measurement and standardization techniques. Geosci J 19, 357–374 (2015). https://doi.org/10.1007/s12303-015-0018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-015-0018-1

Key words

Navigation