Skip to main content
Log in

Carbon, oxygen and strontium isotopic signatures in Maastrichtian-Danian limestones of the Cauvery Basin, South India

  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

A petrographic, carbon, oxygen and strontium study of the carbonate succession of the shallow marine Kallankurichchi and Niniyur formations of the Cauvery Basin, Tamil Nadu, India was conducted to understand the isotopic variations in seawater during Maastrichtian-Danian. The limestones from both the Kallankurichchi and Niniyur formations show large variations in Mn and Sr concentrations and high Mn/Sr ratios indicate alterations of primary isotopic signatures during shallow burial diagenesis. The limestones of both the Kallankurichchi and Niniyur formations show negative δ13C (−4.73 to −0.49‰ VPDB; −5.63 to −1.87‰ VPDB; respectively) and −18O values (−8.89 to −3.66‰ VPDB; −8.56 to −5.41‰ VPDB; respectively). The carbon and oxygen isotope composition, δ13C vs. δ18O plot and Mn/Sr ratio suggest that the measured δ13C and δ18O values have been significantly altered during diagenesis. The limestones from both the Kallankurichchi and Niniyur formations show large variations in 87Sr/86Sr values (0.709310 to 0.711962; 0.708280 to 0.708398, respectively) which are higher than 87Sr/86Sr ratios of the contemporary Lower Maastrichtian (87Sr/86Sr: 0.707760) and Danian (0.707819 to 0.707833) seawaters. The elevated 87Sr/86Sr ratios in the limestones of the Kallankurichchi Formation suggest that these limestones were significantly modified by pore fluids during meteoric diagenesis. The observed large fluctuations in 87Sr/86Sr ratios in the Niniyur Formation resulted from variations in riverine input. One sample from the Niniyur Formation exhibits an unaltered 87Sr/86Sr ratio (0.707828) which is interpreted to indicate an age of 65.02 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitchison J., 1986, The statistical analysis of compositional data. Chapman and Hall, London, 416 p.

    Google Scholar 

  • Ali M.Y., 1995, Carbonate cement stratigraphy and timing of diagenesis in a Miocene mixed carbonate-clastic sequence, offshore Sabah, Malaysia: constraints from cathodo-luminescence, geochemistry, and isotope studies. Sedimentary Geology, 99, 191–214.

    Google Scholar 

  • Allan J.R. and Matthews R.K., 1977, Carbon and oxygen isotopes as diagenetic and stratigraphic tools: data from surface and subsurface of Barbados, West Indies. Geology, 5, 16–20.

    Google Scholar 

  • Allan J.R. and Matthews R.K., 1982, Isotope signatures associated with early meteoric diagenesis. Sedimentology, 29, 797–817.

    Google Scholar 

  • Armstrong-Altrin J.S., Madhavaraju J., Sial A.N., Kasper-Zubillaga J.J., Nagarajan R., Flores-Castro K., and Rodriguez J.L., 2011, Petrography and stable isotope geochemistry of the Cretaceous El Abra Limestones (Actopan), Mexico: Implication on diagenesis. Journal of the Geological Society of India, 77, 349–359.

    Google Scholar 

  • Armstrong-Altrin J.S., Lee Y.I., Verma S.P., and Worden R.H., 2009, Carbon, oxygen, and strontium isotope geochemistry of carbonate rocks of the Upper Miocene Kudankulam Formation, Southern India: Implications for paleoenvironment and diagenesis. Chemie der Erde, 69, 45–60.

    Google Scholar 

  • Bailey T.R., McArthur J.M., Prince H., and Thirwall M.F., 2000, Dissolution methods for strontium isotope stratigraphy: whole rock analysis. Chemical Geology, 167, 313–319.

    Google Scholar 

  • Barnett V. and Lewis T., 1994, Outliers in statistical data. John Wiley & Sons, Chichester, 584 p.

    Google Scholar 

  • Berner R.A. and Rye D.M., 1992, Calculations of the Phanerozoic strontium isotope record of the oceans from a carbon cycle model. American Journal of Science, 292, 136–148.

    Google Scholar 

  • Blanford H.F., 1862, On the Cretaceous and other rocks of south Arcot and Trichinopoly districts. Memoir of Geological Survey of India, 4, 7–217.

    Google Scholar 

  • Brand U. and Veizer J., 1980, Chemical diagenesis of a multi component carbonate system: 1. Trace elements. Journal of Sedimentary Petrology, 50, 1219–1236.

    Google Scholar 

  • Bullen T., White A., Blum A., Harden J., and Schulz M., 1997, Chemical weathering of a soil chronosequence on granitoid alluvium: II. Mineralogic and isotopic constraints on the behaviour of strontium. Geochimica et Cosmochim Acta, 61, 291–306.

    Google Scholar 

  • Burke W.H., Denison R.E., Hetherington E.A., Koepnick R.B., Nelson F.F., and Otto J.B., 1982, Variations of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 10, 516–519.

    Google Scholar 

  • Cerling T.E. and Hay R.L., 1986, An isotopic study of paleosol carbonates from Olduvai Gorge. Quarternary Research, 25, 63–78.

    Google Scholar 

  • Chayes F., 1960, On correlation between variables of constant sum. Journal of Geophysical Research, 65, 4185–4193.

    Google Scholar 

  • Coniglio P., Myrow T., and White, 2000, Stable carbon and oxygen isotope evidence of Cretaceous sea-level fluctuations recorded in septarian concretions from Pueblo, Colorado, USA. Journal of Sedimentary Research, 70, 700–714.

    Google Scholar 

  • Craig H., 1957, Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analyses of carbon dioxide. Geochimica et Cosmochim Acta, 12, 133–149.

    Google Scholar 

  • Davis A.C., Bickle M.J., and Teagle D.A.H., 2003, Imbalance in the oceanic strontium budget. Earth and Planetary Science Letters, 211, 173–187.

    Google Scholar 

  • Dickson J.A.D., 1992, Carbonate mineralogy and chemistry. In: Tucker M.E. and Wright V.P. (eds.), Carbonate Sedimentology. Blackwell Scientific Publications, London, p. 284–313.

    Google Scholar 

  • Ditchfield P.W., Marshall J.D., and Pirrie D., 1994, High latitude palaeotemperature variations: New data from the Thithonian to Eocene of James Ross Island, Antarctica. Palaeogeography Palaeoclimatology Palaeoecology, 107, 79–101.

    Google Scholar 

  • Dunham R.J., 1962, Classification of carbonate rocks according to depositional texture. In: Ham, W.E. (ed.), Classification of carbonate rocks. American Association of Petroleum Geologists Memoir, p. 108–121.

    Google Scholar 

  • Edmond J., 1992, Himalayan tectonics, weathering processes, and strontium isotope record in marine limestones. Science, 258, 1594–1597.

    Google Scholar 

  • Eggins S.M., Woodhead J.D., Kinsley L.P.J., Mortimer G.E., Sylvester P., McCulloch M.T., Hergt J.M., and Handler M.R., 1997, A simple method for the precise determination of = 40 trace elements in geological samples by ICPMS using enriched isotope internal standardization. Chemical Geology, 134, 311–326.

    Google Scholar 

  • Elorza G. and Garcia-Garmilla F., 1998, Paleoenvironmental implications and diagenesis of inoceramid shells (Bi-valvia) in the mid-Masstrichtian beds of Sopelalna, Zumaya and Bidard sections (coast of the Bay of Biscay, Basque Country). Palaeogeography Palaeoclimatology Palaeoecology, 141, 303–328.

    Google Scholar 

  • Embry A.F. and Klovan J.E., 1971, A Late Devonian reef tract on northeastern Flanks Island, Nothwest Territories. Canadian Petroleum Geologists Bulletin, 19, 730–781.

    Google Scholar 

  • Erba E., Channell J.E.T., Claps M., Jones C., Larson R., Opdyke B., Silva I.P., Riva A., Salvini G., and Torricelli S., 1999, Integrated stratigraphy of the Cismon Apticore (Southern Alps, Italy): A “reference section for the Barremian-Aptian interval at low latitudes”. Journal of Foraminiferal Research, 29, 371–391.

    Google Scholar 

  • Faure G., 1986, Principles of Isotope Geology, second edition. Wiley, New York, 589 p.

    Google Scholar 

  • Ferreri V., Weissert H.D., Argenio B., and Buonocunto P., 1997, Carbon isotope stratigraphy: A tool for basin to carbonate platform correlation. Terra Nova, 9, 57–61.

    Google Scholar 

  • Fisher, J.K., Price G.D., Hart M.B., and Leng M.J., 2005, Stable isotope analysis of the Cenomanian-Turonian (Late Cretaceous) oceanic anoxic event in the Crimea. Cretaceous Research, 26, 853–863.

    Google Scholar 

  • Föllmi K.B., Weissert H., Bisping M., and Funk H., 1994, Phosphogenesis, carbon-isotope stratigraphy, and carbonate-platform evolution along the Lower Cretaceous northern Tethyan margin. Geological Society of America Bulletin, 106, 729–746.

    Google Scholar 

  • Gao G., Dworkin S.I., Land L.S., and Elmore R.D., 1996, Geochemistry of late Ordovician Viola limestone, Oklahoma. Implications for marine carbonate mineralogy and isotopic compositions. Journal of Geology, 104, 359–367.

    Google Scholar 

  • Govindan A., Ravindran C.N., and Rangaraju M.K., 1996, Cretaceous stratigraphy and planktonic foraminiferal zonation of Cauvery Basin, South India. Memoir Geological Society of India, 37, 155–187.

    Google Scholar 

  • Grocke D.R., Price G.D., Ruffell A.H., Mutterlose J., and Baraboshkin E., 2003, Isotopic evidence for Late Jurassic-Early Cretaceous climate change. Palaeogeography Palaeoclimatology Palaeoecology, 202, 97–118.

    Google Scholar 

  • Grötsch J., Billing I., and Vahrenkamp V., 1998, Carbon-isotope stratigraphy in shallow water carbonates: implications for Cretaceous black-shale deposition. Sedimentology, 45, 623–634.

    Google Scholar 

  • Henning S., Weissert H., and Bulot L., 1999, C-isotope stratigraphy, a calibration tool between ammonite and magnetostratigraphy: the Valanginian-Hauterivian transition. Geologica Carpathica, 50, 91–96.

    Google Scholar 

  • Hesselbo S.P., Meister C., and Grocke D.R., 2000, A potential global stratotype for the Sinemurian-Pliensbachian boundary (Lower Jurassic), Robin Hood’s Bay, UK: ammonite faunas and isotope stratigraphy. Geological Magazine, 137, 601–607.

    Google Scholar 

  • Hodell D.A., Mueller P.A., McKenzie J.A., and Mead G.A., 1989, Strontium isotope stratigraphy and geochemistry of the late Neogene ocean. Earth and Planetary Science Letters, 92, 165–178.

    Google Scholar 

  • Howarth R.J. and McArthur J.M., 1997, Statistics for strontium isotope stratigraphy. A robust LOWESS fit to the marine Sr-isotope curve for 0?206Ma, with look-up table for the derivation of numerical age. Journal of Geology, 105, 441–456.

    Google Scholar 

  • Hudson J.D., 1977, Stable isotopes and limestone lithification. Journal of the Geological Society of London, 133, 637–660.

    Google Scholar 

  • Jacobsen S.B. and Kaufman A.J., 1999, The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology, 161, 37–57.

    Google Scholar 

  • Jenkyns H.C., 1974, Origin of red nodular limestones (Ammonitico Rosso Knollenkalke) in the Mediterranean Jurassic: A diagenetic model, in Pelagic Sediments on Land and Under the Sea. In: Hsu K.J. and Jenkyns H.C. (eds.), International Association of Sedimentologists, Special Publication, Blackwell, Cambridge, 1, p. 49–271.

    Google Scholar 

  • Jenkyns H.C., 1995, Carbon isotope stratigraphy and paleoceanographic significance of the Lower Cretaceous shallow-water carbonates of Resolution Guyot, Mid-Pacific Mountains. Proceedings of Ocean Drilling Program, Scientific Results, 143, 99–104.

    Google Scholar 

  • Jenkyns H.C., 1996, Relative sea-level change and carbon isotope: Data from the Upper Jurassic (Oxfordian) of central and southern Europe. Terra Nova, 8, 75–85.

    Google Scholar 

  • Jenkyns H.C. and Clayton C.J., 1986, Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic. Sedimentology, 33, 87–106.

    Google Scholar 

  • Jenkyns H.C., Gale A.S., and Corfield R.M., 1994, Carbon and oxygen isotope stratigraphy of English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine, 131, 1–34.

    Google Scholar 

  • Jenkyns H.C., Jones C.E., Grocke D.R., Hesselbo S.P., and Parkinson D.N., 2002, Chemostratigraphy of the Jurassic System: applications, limitations and implications for paleoceanography. Journal of the Geological Society of London, 15, 351–378.

    Google Scholar 

  • Jones C.E., Jenkyns H.C., and Hesselbo S.P., 1994a, Strontium isotopes in Early Jurassic Seawater. Geochimica et Cosmochimica Acta, 58, 1285–1301.

    Google Scholar 

  • Jones C.E., Jenkyns H.C., Coe A.L., and Hesselbo S.P., 1994b, Strontium isotopes in Jurassic and Cretaceous Seawater. Geochimica et Cosmochimica Acta, 58, 3061–3074.

    Google Scholar 

  • Jorgensen N.O., 1987, Oxygen and carbon isotope compositions of upper Cretaceous chalk from the Danish sub-basin and the North Sea Central Graben. Sedimentology, 34, 559–570.

    Google Scholar 

  • Kailasam L.N. and Bhanumurthy Y.R., 1962, Gravity, magnetic and reflection seismic investigations in the Cauvery Basin, Madras State. Geological Survey of India, Unpublished report.

    Google Scholar 

  • Kakizaki Y. and Kano A., 2009, Architecture and chemostratigraphy of Late Jurassic shallow marine carbonates in NE Japan, western Paleo-Pacific. Sedimentary Geology, 214, 49–61.

    Google Scholar 

  • Krishnan M.S., 1982, Geology of India and Burma. Sixth edition, CBS Publishers and Distributors, Delhi, 536 p.

    Google Scholar 

  • Kumar B., Sharma S.D., Sreenivas B., Dayal A.M., Rao M.N., Dubey N., and Chawla B.R., 2002, Carbon, oxygen and strontium isotope geochemistry of Proterozoic carbonate rocks of the Vindhyan Basin, central India. Precambrian Research, 113, 43–63.

    Google Scholar 

  • Lachance G.R. and Traill R.J., 1966, A practical solution to the matrix problem in X-ray analysis, I. Method. Canadian Spectroscopy, 11, 43–48.

    Google Scholar 

  • Land L.S., 1970, Phreatic versus vadose meteoric diagenesis of limestones: evidence from a fossil water table. Sedimentology, 14, 175–185.

    Google Scholar 

  • Lini A., Weissert H., and Erba E., 1992, The Valanginian carbonisotope event: a first episode of greenhouse climate conditions during the Cretaceous. Terra Nova, 4, 374–384.

    Google Scholar 

  • Madhavaraju J. and Lee Y.I., 2009, Geochemistry of the Dalmiapuram Formation of the Uttatur Group (Early Cretaceous), Cauvery Basin, Southeastern India: Implications on Provenance and Paleoredox conditions. Revista Mexicana de Ciencias Geologicas, 26, 380–394.

    Google Scholar 

  • Madhavaraju J. and Lee Y.I., 2010, Influence of Deccan Volcanism in the sedimentary rocks of Late Maastrichtian-Danian age of Cauvery Basin, Southeastern India: Constraints from Geochemistry. Current Science, 98, 528–537.

    Google Scholar 

  • Madhavaraju J. and Ramasamy S., 1999a, Rare earth elements in limestones of Kallankurichchi Formation of Ariyalur Group, Tiruchirapalli Cretaceous, Tamil Nadu. Journal of the Geological Society of India, 54, 291–301.

    Google Scholar 

  • Madhavaraju J. and Ramasamy S., 1999b, Microtextures on quartz grains of Campanian-Maastrichtian sediments of Ariyalur Group of Tiruchirapalli Cretaceous, Tamil Nadu-Implication on depositional environments. Journal of the Geological Society of India, 54, 647–658.

    Google Scholar 

  • Madhavaraju J. and Ramasamy S., 2001, Clay mineral assemblages and rare earth element distribution in the sediments of Ariyalur Group, Tiruchirapalli District, Tamil Nadu–Implication for paleoclimate. Journal of the Geological Society of India, 58, 69–77.

    Google Scholar 

  • Madhavaraju J. and Ramasamy S., 2002, Petrography and geochemistry of Late Maastrichtian-Early Paleocene sediments of Tiruchirapalli Cretaceous, Tamil Nadu-Paleoweathering and provenance implications. Journal of the Geological Society of India, 5, 133–142.

    Google Scholar 

  • Madhavaraju J., Lee Y.I., and Gonzalez-Leon C.M., 2013a, Carbon, oxygen and strontium isotopic signatures in Aptian-Albian limestones of the Mural Formation, Cerro Pimas area, northern Sonora, Mexico. Journal of Iberian Geology. 39, 73–88.

    Google Scholar 

  • Madhavaraju J., Ramasamy S., Alastair Ruffell, and Mohan S.P., 2002, Clay mineralogy of the Late Cretaceous-Early Tertiary succession of the Cauvery Basin (Southeastern India)- Implication for sediment source and paleoclimates at the K/T boundary. Cretaceous Research, 23, 153–163.

    Google Scholar 

  • Madhavaraju J., Sial A.N., Gonzalez-Leon C.M., and Nagarajan R., 2013b, Carbon and oxygen isotopic variations in Early Albian limestone facies of the Mural Formation, Pitaycachi section, northeastern Sonora, Mexico. Revista Mexicana de Ciencias Geologicas, 30, 526–539.

    Google Scholar 

  • Madhavaraju J., Hussain S.M., Guruvappan M., Ramasamy S., and Mohan S.P., 2006, Sequence stratigraphy of Lower Niniyur Formation of Cauvery Basin, Southern India. Journal of the Geological Society of India, 68, 685–694.

    Google Scholar 

  • Madhavaraju J., Kolosov I., Buhlak D., Armstrong-Altrin J.S., Ramasamy S., and Mohan S.P., 2004, Carbon and oxygen isotopic signatures in Albian-Danian limestones of Cauvery basin, southeastern India. Gondwana Research, 7, 527–537.

    Google Scholar 

  • Marquillas R., Sabino I., Sial A.N., Del Papa C., Ferreira V., and Matthews S., 2007, Carbon and oxygen isotopes of Maastrichtian- Danian shallow marine carbonates: Yacoraite Formation, northwestern Argentina. Journal of South American Earth Sciences, 23, 304–320.

    Google Scholar 

  • Masse J.P., El Albani A., and Erlenkeuser H., 1999, Isotope stratigraphy (Delta-C-13) of Lower Aptian from Provence (SE France)–Application to platform/basin correlations. Eclogae Geologica Helvetica, 92, 259–263.

    Google Scholar 

  • McArthur J.M., Crame J.A., and Thirlwall M.F., 2000, Definition of Late Cretaceous stage boundaries in Antarctica using strontium isotope stratigraphy. Journal of Geology, 108, 623–640.

    Google Scholar 

  • McArthur J.M., Howarth R.J., and Bailey T.R., 2001, Strontium isotope stratigraphy: Lowess Version 3: Best-fit to the marine Srisotope curve for 0 to 509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology, 109, 155–170.

    Google Scholar 

  • McArthur J.M., Kennedy W.J., Chen M., Thirlwall M.F., and Gale A.S., 1994, Strontium isotope stratigraphy for Late Cretaceous time: direct numerical calibration of the Sr isotope curve based on the US Western Interior. Palaeogeography Palaeoclimatology Palaeoecology, 108, 95–119.

    Google Scholar 

  • McLeod K.G. and Ward P.D., 1990, Extinction pattern of Inoceramus (Bivalvia) based on shell fragment biostratigraphy. In: Sharpton V.L. and Ward P.D. (eds.), Global catastrophes in earth history. An interdisciplinary conference on impacts, volcanism and mass mortality. Geological Society of America Special paper, 247, p. 509–518.

    Google Scholar 

  • Millers K.G., Feigenson M.D., Kent D., and Olsson R.K., 1988, Upper Eocene to Oligocene isotope (87Sr/86Sr, d18O, d13C) standard section, Deep sea drilling Project site 522. Paleoceanography, 3, 223–233.

    Google Scholar 

  • Moore C.H., 2001, Carbonate Reservoirs: Porosity evolution and diagenesis in a sequence stratigraphic framework. Developments in Sedimentology, Elsevier, Amsterdam, 444 p.

    Google Scholar 

  • Morrison J.O. and Brand U., 1986, Geochemistry of recent marine invertebrates. Geosciences Canada, 13, 237–254.

    Google Scholar 

  • Moullade M., Kuhnt W., Bergen J.A., Masse J.P., and Tronchetti G., 1998, Correlation of biostratigraphic and stable isotope events in the Aptian historical stratotype of La Bédoule (southeast France). Comptes Rendus de I’Académie des Sciences, Paris Série IIA Sciences de la Terre et des Planètes, 327, 693–698.

    Google Scholar 

  • Nagarajan R., Sial A.N., Armstrong-Altrin J.S., Madhavaraju J., and Nagendra R., 2008, Carbon and oxygen isotope geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima Basin, Karnataka, southern India. Revista Mexicana de Ciencias Geologicas, 25, 225–235.

    Google Scholar 

  • Nagendra R., Nagendran G., Narasimha K., Jaiprakash B.C., and Nallapa Reddy A., 2002, Sequence stratigraphy of Dalmiapuram Formation, Kallakkudi Quarry–II, South India. Journal of the Geological Society of India, 59, 249–258.

    Google Scholar 

  • Podlaha O.G., Mutterlose J., and Veizer J., 1998, Preservation of d18O and d13C in belemnite rostra from Jurassic/Early Cretaceous successions. American Journal of Science, 298, 324–347.

    Google Scholar 

  • Poulson S.R. and John B.E., 2003, Stable isotope and trace element geochemistry of the basal Bouse Formation carbonate, southwestern United States: implications for the Pliocene uplift history of the Colorado plateau. Geological Society of America Bulletin, 115, 434–444.

    Google Scholar 

  • Prabhakar K.N. and Zutshi P.L., 1993, Evolution of southern part of Indian east coast basins. Journal of the Geological Society of India, 41, 215–230.

    Google Scholar 

  • Price G.D., Ruffell A.H., Jones C.E., Kalin R.M. and Mutterlose J., 2000, Isotopic evidence for temperature variation during theearly Cretaceous (late Ryazanian-mid-Hauterivian). Journal of Geological Society of London, 157, 335–343.

    Google Scholar 

  • Price G.D. and Sellwood B.W., 1997, Warm palaeotemperatures from high Late Jurassic palaeo-latitudes (Falkland Plateau): Ecological, environmental or diagenetic controls? Palaeogeography Palaeoclimatology Palaeoecology, 129, 315–327.

    Google Scholar 

  • Probst A., El Chmari A., Aubert D., Fritz B., and McNutt R., 2000, Strontium as a tracer of weathering processes in a silicate catchment polluted by acid atmospheric inputs, Strengbach, France. Chemical Geology, 170, 203–219.

    Google Scholar 

  • Quade J. and Cerling T.E., 1995, Expansion of C4 grasses in the late Miocene of northen Pakishtan. Evidence from paleosols. Palaeogeography Palaeoclimatology Palaeoecology, 115, 91–116.

    Google Scholar 

  • Ramasamy S. and Banerji R.K., 1991, Geology, petrography and stratigraphy of pre-Ariyalur sequence in Tiruchirapalli District, Tamil Nadu. Journal of the Geological Society of India, 37, 577–594.

    Google Scholar 

  • Ramkumar M., Stuben D., and Berner Z., 2011, Barremian–Danian chemostratigraphic sequences of the Cauvery Basin, India: Implications on scales of stratigraphic correlation. Gondwana Research, 19, 291–309.

    Google Scholar 

  • Ramkumar M., Stuben D., Berner Z., and Schneider J., 2010, 87Sr/ 86Sr anomalies in Late Cretaceous-Early Tertiary strata of the Cauvery Basin, South India: Constrains on nature and rate of environmental changes across K-T boundary. Journal of Earth System Science, 119, 1–17.

    Google Scholar 

  • Rea D.K., 1992, Delivery of Himalayan sediment to the Northern Indian Ocean and its relation to global climate, sea level, uplift, and seawater strontium. In: Duncan R.A., Rea D.K., Kidd R.B., von Rad U., and Weissel J.K., (eds.), Synthesis of Results from Scientific Drilling in the Indian Ocean. American Geophysical Union, Geophysical Monograph, 70, 387–402.

    Google Scholar 

  • Sastry M.V.A., Mamgain V.D. and Rao B.R.J., 1972, Ostracod fauna of the Ariyalur Group (Upper Cretaceous), Tiruchirapalli District, Tamil Nadu. Part I. Lithostratigraphy of the Ariyalur Group. Memoir Geological Survey of India, Palaeontologica Indica, New Series, 40, 1–48.

    Google Scholar 

  • Scholle P.A. and Arthur M.A., 1980, Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool. Bulletin American Association of Petroleum Geologists, 64, 67–87.

    Google Scholar 

  • Scott L., 2002, Grassland development under glacial and interglacial conditions in southern Africa: review of pollen, phytolith and isotope evidence. Palaeogeography Palaeoclimatology Palaeoecology, 177, 47–57.

    Google Scholar 

  • Sial A.N., Ferreira V.P., Toselli A.J., Parada M.A., Aceñolaza F.G., Pimentel M.M., and Alonso R.N., 2001, Carbon and oxygen isotope composition of some Upper Cretaceous-Paleocene sequences in Argentina and Chile. International Geological Review, 43, 892–909.

    Google Scholar 

  • Srivastava P., 2001, Paleoclimatic implications of pedogenic carbonates in Holocene soils of the Gangetic Plains, India. Palaeogeography Palaeoclimatology Palaeoecology, 17, 207–222.

    Google Scholar 

  • Sundaram R. and Rao P.S., 1986, Lithostratigraphy of Cretaceous and Paleocene rocks of Trichinopoly District of Tamil Nadu, South India. Record Geological Survey of India, 115, 9–23.

    Google Scholar 

  • Sundaram R., Henderson R.A., Ayyasami K., and Stilwell J.D., 2001, A lithostratigraphic revision and palaeoenvironmental assessment of the Cretaceous System exposed in the onshore Cauvery Basin, Southern India. Cretaceous Research, 22, 743–762.

    Google Scholar 

  • Tardy Y., N’Kounkou R., and Probst J.L., 1989, the global water cycle and continental erosion during Phanerozoic time (570 my). American Journal of Science, 289, 455–483.

    Google Scholar 

  • Taylor A.G. and Lasaga A.C., 1999, The role of basalt weathering in the Sr isotope budget of the oceans. Chemical Geology, 161, 199–214.

    Google Scholar 

  • Veizer J., 1983, Chemical diagenesis of carbonates; theory and application of trace element technique. In: Arthur M.A., Anderson T.F., Kaplan I.R., Veizer J., and Land L.S. (eds.), Stable Isotopes in Sedimentary Geology. Society of Economic Palaeontologists and Mineralogists, p. 3–100.

    Google Scholar 

  • Veizer J., Clayton R.N., and Hinton R., 1992a, Geochemistry of Precambrian carbonates: IV: Early Palaeoproterozoic (2.25 0.25 Ga) seawater. Geochimica et Cosmochimica Acta, 53, 859–871.

    Google Scholar 

  • Veizer J., Plumb K.A., Clayton R.N., Hinton R.W., and Grotzinger J.P., 1992b, Geochemistry of Precambrian carbonate: V Late Proterozoic seawater. Geochimica et Cosmochimica Acta, 56, 2487–2501.

    Google Scholar 

  • Veizer J., Buhl D., Diener A., Ebneth S., Podlaha O.G., Bruckschen P., Jasper T., Korte C., Schaaf F., Ala D., and Azmy K., 1997, Strontium isotope stratigraphy: potential resolution and event correction. Palaeogeography Palaeoclimatology Palaeoecology, 132, 65–77.

    Google Scholar 

  • Veizer J., Ala D., Azmy K., Bruckschen P., Buhl D., Bruhn F., Carden G.A.F., Diener A., Ebneth S., Goddéris Y., Jasper T., Korte C., Pawellek F., Podlaha O.G., and Strauss H., 1999, 87Sr/86Sr, d13C and d18O evolution of Phanerozoic seawater. Chemical Geology, 161, 59–88.

    Google Scholar 

  • Verma S.P., 1992, Seawater alteration effects on REE, K, Rb, Cs, Sr, U, Th, Pb and Sr-Nd-Pb isotope systematic of mid-ocean ridge basalt. Geochemical Journal, 26, 159–177.

    Google Scholar 

  • Verma S.P., 2005, Estadística básica para el manejo de datos experimentales: aplicación en la Geoquímica (Geoquimiometría). México D.F., UNAM, 186 p.

  • Verma S.P., 2012, Geochemometrics. Revista Mexicana de Ciencias Geológicas, 29, 276–298.

    Google Scholar 

  • Verma S.P. and Hasaneka T., 2004, Sr, Nd ad Pb isotopic and trace element geochemical constraints for a veined-mantle source of magmas in the Michoacán-Guanajuato volcanic field, west-central Mexican Volcanic Belt. Geochemical Journal, 38, 43–65.

    Google Scholar 

  • Verma S.P. and Díaz-González L., 2012, Application of the discordant outlier detection and separation system in the geosciences. International Geology Review, 54, 593–614.

    Google Scholar 

  • Verma S.P., Díaz-González L., Sánchez-Upton P., and Santoyo E., 2006, OYNYL: a new computer program for ordinary, York, and New York least-squares linear regressions. WSEAS Transactions on Environment and Development, 2, 997–1002.

    Google Scholar 

  • Weissert H., 1989, C-isotope stratigraphy, a monitor of palaeo-environmental change: a case study from the Early Cretaceous. Survey Geophysics, 10, 1–16.

    Google Scholar 

  • Weissert H., Lini A., Föllmi K.B., and Kuhn O., 1998, Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: a possible link? Palaeogeography Palaeoclimatology Palaeoecology, 137, 189–203.

    Google Scholar 

  • Wendler I., Wendler J., Gräfe K.U., Lehmann J., and Willems H., 2009, Turonian to Santonian carbon isotope data from the Tethys Himalaya, southern Tibet. Cretaceous Research, 30, 961–979.

    Google Scholar 

  • Zakharov Y.D., Shigeta Y., Nagendra R., Safronov P.P., Smyshlyaeya O.P., Popov A.M., Velivetskaya T.A., and Afanasyeva T.B., 2011, Cretaceous climate oscillations in the southern palaeolatitudes: New stable isotope evidence from India and Madagascar. Cretaceous Research, 32, 623–645.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayagopal Madhavaraju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhavaraju, J., Sial, A.N., Rakhinath, R. et al. Carbon, oxygen and strontium isotopic signatures in Maastrichtian-Danian limestones of the Cauvery Basin, South India. Geosci J 19, 237–256 (2015). https://doi.org/10.1007/s12303-014-0039-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-014-0039-1

Keywords

Navigation