Skip to main content

Detection of vertical slope movement in highly vegetated tropical area of Gunung pass landslide, Malaysia, using L-band InSAR technique

Abstract

Landslides are one of the most dangerous natural hazards in the world which have significant negative impact on so many lives and properties. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring changes in the detailed characteristics of the surface which is timely and cost effective. This research aimed to detect the landslide that occurred in Gunung pass area, Malaysia using InSAR generated from ALOSPALSAR repeat pass data. The signals information was converted into amplitude and phase for both scenes where the phases were used to construct the InSAR. Goldstein filter was used to reduce the phase noise and the results were used as an input for phase unwrapping. Using the unwrapped phase, the vertical displacement was measured and landslide was recognized. Results showed the efficiency of InSAR in detecting the movement of landslide in Gunung pass without the differential having to generate DInSAR. The results were validated using the observed reference point of the landslides and the root mean square error (RMSE) was 0.19. Furthermore, advance 3D processing was performed for measuring the volume of the landslides. The achievements of current research represented that PALSAR data yield excellent performance to generate the interferometric and landslide could be detected very precisely in highly vegetated tropical forest.

This is a preview of subscription content, access via your institution.

References

  • Akgun, A., Sezer, E.A., Nefeslioglu, H.A., Gokceoglu, C., and Pradhan, B., 2012, An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Computers and Geosciences, 38, 23–34.

    Article  Google Scholar 

  • Abdelfattah, R. and Nicolas, J.M., 2002, Topographic SAR interferometry formulation for high-precision DEM generation. IEEE Transactions on Geoscience and Remote Sensing, 40, 2415–2426.

    Article  Google Scholar 

  • Alimuddin, I., Bayuaji, L., Maddi, H.C., Sri Sumantyo, J.T., and Kuze, H., 2013, Developingtropical landslide susceptibility map using dinsar technique of jers-1Sar Data. International Journal of Remote Sensing and Earth Sciences (IJReSES), 8, 32–40.

    Google Scholar 

  • Angeli, M.G., Pasuto, A., and Silvano, S., 2000, A critical review of landslide monitoring experiences. Engineering Geology, 55, 133–147.

    Article  Google Scholar 

  • Baran, I., Stewart, M.P., Kampes, B.M., Perski, Z., and Lilly, P., 2003, A modification to the Goldstein radar interferogram filter. IEEE Transactions on Geoscience and Remote Sensing, 41, 2114–2118.

    Article  Google Scholar 

  • Baek, J., Kim, S.W., Park, H.J., Jung, H.S., Kim, K.D., and Kim, J.W., 2008, Analysis of ground subsidence in coal mining area using SAR interferometry. Geosciences Journal, 12, 277–284.

    Article  Google Scholar 

  • Cattabeni, M., Monti-Guarnieri, A., and Rocca, F., 1994, Estimation and improvement of coherence in SAR interferograms. Geoscience and Remote Sensing Symposium, IGARSS’94. Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, International, IEEE, Aug 8–12, 2, p. 720–722.

    Google Scholar 

  • Chen, Y., Zhang, G., Ding, X., and Li, Z., 2000, Monitoring Earth Surface Deformations with InSAR Technology: Principles and Some Critical Issues. Journal of Geospatial Engineering, 2, 3–22.

    Google Scholar 

  • Crosetto, M. and Pérez Aragues, F., 2000, Radargrammetry and SAR Interferometry for DEM Generation: Validation and Data Fusion. In SAR workshop: CEOS Committee on Earth Observation Satellites, 450, p. 367.

    Google Scholar 

  • Dalla Via, G., Crosetto, M., and Crippa, B., 2012, Resolving vertical and east-west horizontal motion from differential interferometric synthetic aperture radar: The L’Aquila earthquake. Journal of Geophysical Research: Solid Earth (1978–2012), 117, DOI: 10.1029/2011JB008689.

    Google Scholar 

  • Dong, S., Yin, H., Yao, S., and Zhang, F., 2013, Detecting surface subsidence in coal mining area based on DInSAR technique. Journal of Earth Science, 24, 449–456.

    Article  Google Scholar 

  • Engdahl, M.E. and Hyyppa, J.M., 2003, Land-cover classification using multitemporal ERS-1/2 InSAR data. IEEE Transactions on Geoscience and Remote Sensing, 41, 1620–1628.

    Article  Google Scholar 

  • Estrada, J.C., Servin, M., and Vargas, J., 2012, 2D simultaneous phase unwrapping and filtering: A review and comparison. Optics and Lasers in Engineering, 50, 1026–1029.

    Article  Google Scholar 

  • Fruneau, B., Delacourt, C., and Achache, J., 1996, Observation and modeling of the Saint-Etienne-de-Tinée landslide using SAR interferometry. FRINGE’96 ESA Workshop on Applications of ERS SAR Interferometry, Zurich, Switzerland, 30 September to 2 October. http://www.geo.unizh.ch/rsl/fringe96/papers/fruneau/.

    Google Scholar 

  • Gabriel, A.K., Goldstein R.M., and Zebaker H.A., 1989, Mapping small elevation changes over large areas: differential radar interferometry. Journal of Geophysical Research, 94, 83–91.

    Article  Google Scholar 

  • Goldstein, R.M. and Werner, C.L., 1998, Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25, 4035–4038.

    Article  Google Scholar 

  • Gourmelen, N., Kim, S.W., Shepherd, A., Park, J.W., Sundal, A.V., Björnsson, H., and Palsson, F., 2011, Ice velocity determined using conventional and multiple-aperture InSAR. Earth and Planetary Science Letters, 307, 156–160.

    Article  Google Scholar 

  • Graham, L.C., 1974, Synthetic interferometer radar for topographic mapping. Proceedings of the IEEE, 62, 763–768.

    Article  Google Scholar 

  • Granica, K., Nagler, T., Eisl, M.M., Schardt, M., and Rott, H., 2005, Satellite remote sensing data for an Alpine related disaster management GIS. The 2nd International ISCRAM Conference, p. 221–232.

    Google Scholar 

  • Hassaballa, A.A., Althuwaynee, O.F., and Pradhan, B., 2013, Extraction of soil moisture from RADARSAT-1 and its role in the formation of the 6 December 2008 landslide at Bukit Antarabangsa, Kuala Lumpur. Arabian Journal of Geosciences, 1–10, DOI:10.1007/s12517-013-0990-6.

    Google Scholar 

  • Holecz, F., Moreira, J., Pasquali, P., Voigt, S., Meier, E., and Nuesch, D., 1997, Height model generation, automatic geocoding and a mosaicing using airborne AeS-1 InSAR data. Geoscience and Remote Sensing, IGARSS’97, Remote Sensing-A Scientific Vision for Sustainable Development, IEEE International, 4, p. 1929–1931.

    Google Scholar 

  • Hsiao, K.H., Liu, J.K., Yu, M.F., and Tseng, Y.H., 2004, Change detection of landslide terrains using ground-based lidar data. XXth ISPRS Congress, Istanbul, Turkey, Commission VII, WG VII/5, 5 p.

    Google Scholar 

  • Jo, M.J., Won, J.S., Kim, S.W., and Jung, H.S., 2010, A time-series SAR observation of surface deformation at the southern end of the San Andreas Fault Zone. Geosciences Journal, 14, 277–287.

    Article  Google Scholar 

  • Kamiya, I., 2007, Geometric characteristics of the early products of ALOS PRISM. Bulletin of the Geographical Survey Institute, 54, 75–82.

    Google Scholar 

  • Khan, Y.A., 2010, Monitoring of Hill-Slope Movement Due to Rainfall at Gunung Pass of Cameron Highland District of Peninsular Malaysia.International Journal of Earth Sciences and Engineering, 3, 06–12

    Google Scholar 

  • Kim, D.J., Moon, W.M., Kim, G., Park, S.E., and Lee, H., 2011, Submarine groundwater discharge in tidal flats revealed by space-borne synthetic aperture radar. Remote Sensing of Environment, 115, 793–800.

    Article  Google Scholar 

  • Kim, J.S., Kim, D.J., Kim, S.W., Won, J.S., and Moon, W.M., 2007, Monitoring of urban land surface subsidence using PSInSAR. Geosciences Journal, 11, 59–73.

    Article  Google Scholar 

  • Kim, S.W., Won, J.S., Kim, J.W., Moon, W.M., and Min, K.D., 2001, Multi temporal JERS-1 SAR investigation of Mt. Baekdu stratovolcano using differential interferometry. Geosciences Journal, 5, 301–312.

    Article  Google Scholar 

  • Lachaise, M., Fritz, T., Balss, U., Bamler, R., and Eineder, M., 2012, Phase unwrapping correction with dual baseline data for the Tan-DEM-X mission. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Munich, p. 4.

  • Lee, S. and Choi, U., 2003, Development of GIS-based geological hazard information system and its application for landslide analysis in Korea. Geosciences Journal, 7, 243–252.

    Article  Google Scholar 

  • Lee, S. and Pradhan, B., 2006, Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. Journal of Earth System Science, 115, 661–672.

    Article  Google Scholar 

  • Liu, G.X., Ding, X.L., Li, Z.L., Li, Z.W., Chen, Y.Q., and Yu, S.B., 2004, Pre-and co-seismic ground deformations of the 1999 Chi-Chi, Taiwan earthquake, measured with SAR interferometry. Computers and Geosciences, 30, 333–343.

    Article  Google Scholar 

  • Malet, J.P., Maquaire, O., and Calais, E., 2002, The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology, 43, 33–54.

    Article  Google Scholar 

  • Malone, A.W., Hansen, A., Hencher, S.R., and Fletcher, C.J.N., 2008, Post-failure movements of a large slow rock slide in schist near Pos Selim, Malaysia. In: Chen et al. (eds.), Proceedings of the 10th International Symposium on Landslides and Engineered Slopes, Xi’an, China, 1, 457–461.

    Google Scholar 

  • Massonnet, D. and Feigl, K.L., 1998, Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics, 36, 441–500.

    Article  Google Scholar 

  • Navarro, M.A., Estrada, J.C., Servin, M., Quiroga, J.A., and Vargas, J., 2012, Fast two-dimensional simultaneous phase unwrapping and low-pass filtering. Optics Express, 20, 2556–2561.

    Article  Google Scholar 

  • Nizalapur, V., Madugundu, R., and Jha, C.S., 2011, Coherence-based land cover classification in forested areas of Chattisgarh, Central India, using environmental satellite—advanced synthetic aperture radar data. Journal of Applied Remote Sensing, 5, 059501–059501.

    Article  Google Scholar 

  • Ojha, C., Manunta, M., Pepe, A., Paglia, L., and Lanari, R., 2012, An innovative region growing algorithm based on Minimum Cost Flow approach for Phase Unwrapping of full-resolution differential interferograms. In Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, Munich, July 22–27, p. 5582–5585.

    Chapter  Google Scholar 

  • Oh, J.J. and Pradhan, B., 2011, Application of a neuro-fuzzy model to landslide susceptibility mapping in a tropical hilly area. Computers and Geosciences, 37, 1264–1276, doi:10.1016/j.cageo.2010.10.012.

    Article  Google Scholar 

  • Pradhan, B., 2010, Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. Journal of Spatial Hydrology, 9, 1–18.

    Google Scholar 

  • Pradhan, B., 2011, Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environmental Earth Sciences, 63, 329–349.

    Article  Google Scholar 

  • Pradhan, B., 2013, A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers and Geosciences, 51, 350–365.

    Article  Google Scholar 

  • Pradhan, B. and Lee, S., 2010a, Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences, 60, 1037–1054.

    Article  Google Scholar 

  • Pradhan, B. and Lee, S., 2010c, Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides, 7, 13–30.

    Article  Google Scholar 

  • Pradhan, B. and Youssef, A.M., 2010, Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arabian Journal of Geosciences, 3, 319–326.

    Article  Google Scholar 

  • Pradhan, B., Mansor, S., Pirasteh, S., and Buchroithner, M.F., 2011, Landslide hazard and risk analyses at a landslide prone catchment area using statistical based geospatial model. International Journal of Remote Sensing, 32, 4075–4087.

    Article  Google Scholar 

  • Pradhan, B., Youssef, A.M., and Varathrajoo, R., 2010b, Approaches for delineating landslide hazard areas using different training sites in an advanced artificial neural network model. Geo-Spatial Information Science, 13, 93–102.

    Article  Google Scholar 

  • Pradhan, B., Sezer, E.A., Gokceoglu, C., and Buchroithner, M.F., 2010a, Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia). IEEE Transactions on Geoscience and Remote Sensing, 48, 4164–4177.

    Article  Google Scholar 

  • Rodriguez-Cassola, M., Baumgartner, S.V., Krieger, G., and Moreira, A., 2010, Bistatic TerraSAR-X/F-SAR spaceborne-airborne SAR experiment: description, data processing, and results. IEEE Transactions on Geoscience and Remote Sensing, 48, 781–794.

    Article  Google Scholar 

  • Samsonov, S., Tiampo, K., Rundle, J., and Li, Z., 2007, Application of DInSAR-GPS optimization for derivation of fine-scale surface motion maps of Southern California. IEEE Transactions on Geoscience and Remote Sensing, 45, 512–521.

    Article  Google Scholar 

  • Scambos, T.A. and Haran, T., 2002, An image-enhanced DEM of the Greenland Ice Sheet. Annals of Glaciology, 34, 291–298.

    Article  Google Scholar 

  • Sidle, R.C. and Ochiai, H., 2006, Landslides-Processes, Prediciton and Land Use. American Geophysical Union Books Board, Washington, 312 p.

    Google Scholar 

  • Singh, L.P., van Westen, C.J., Ray, P.C., and Pasquali, P., 2005, Accuracy assessment of InSAR derived input maps for landslide susceptibility analysis: a case study from the Swiss Alps. Landslides, 2, 221–228.

    Article  Google Scholar 

  • Singhroy, V., Alasset, P.J., Couture, R., and Froese, C., 2008, InSAR monitoring of landslides in Canada. Geoscience and Remote Sensing Symposium, IEEE International, Boston, July 7–11, 3, p. 202–205.

    Google Scholar 

  • Singhroy, V., Mattar, K.E., and Gray, A.L., 1998, Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images. Advances in Space Research, 21, 465–476.

    Article  Google Scholar 

  • Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., and Dick, O.B., 2012a, Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Computers and Geosciences, 45, 199–211.

    Article  Google Scholar 

  • Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., and Dick, O.B., 2012b, Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena, 96, 28–40.

    Article  Google Scholar 

  • Tien Bui, D., Pradhan, B., Lofman, O., and Revhaug, I., 2012c, Landslide susceptibility assessment in Vietnam using support vector machines, decision tree and Naive Bayes models. Mathematical Problems in Engineering, 2012, 26 pages, http://www.hindawi.com/journals/mpe/aip/974638/.

    Google Scholar 

  • Van Westen, C.J., Rengers, N., and Soeters, R., 2003, Use of geomorphological information in indirect landslide susceptibility assessment. Natural Hazards, 30, 399–419.

    Article  Google Scholar 

  • Yoon, Y.T., Eineder, M., Yague-Martinez, N., and Montenbruck, O., 2009, TerraSAR-X precise trajectory estimation and quality assessment. IEEE Transactions on Geoscience and Remote Sensing, 47, 1859–1868.

    Article  Google Scholar 

  • Youssef, A.M., Pradhan, B., and Maerz, N.H., 2013, Debris flow impact assessment caused by 14 April 2012 rainfall along the Al-Hada Highway, Kingdom of Saudi Arabia using high-resolution satellite imagery. Arabian Journal of Geosciences, 1–11, DOI: 10.1007/s12517-013-0935-0.

    Google Scholar 

  • Zebker, H.A., Rosen, P.A., Goldstein, R.M., Gabriel, A., and Werner, C.L., 1994, On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. Journal of Geophysical Research: Solid Earth (1978–2012), 99, 19617–19634.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jebur, M.N., Pradhan, B. & Tehrany, M.S. Detection of vertical slope movement in highly vegetated tropical area of Gunung pass landslide, Malaysia, using L-band InSAR technique. Geosci J 18, 61–68 (2014). https://doi.org/10.1007/s12303-013-0053-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-013-0053-8

Key words

  • Synthetic Aperture Radar (SAR)
  • landslide
  • InSAR
  • Gunung pass
  • remote sensing
  • GIS
  • ALOS PALSAR