Skip to main content
Log in

Reduced expression of chlorophyllide a oxygenase (CAO) decreases the metabolic flux for chlorophyll synthesis and downregulates photosynthesis in tobacco plants

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Chlorophyll b is synthesized from chlorophyllide a, catalyzed by chlorophyllide a oxygenase (CAO). To examine whether reduced chlorophyll b content regulates chlorophyll (Chl) synthesis and photosynthesis, we raised CAO transgenic tobacco plants with antisense CAO expression, which had lower chlorophyll b content and, thus, higher Chl a/b ratio. Further, these plants had (i) lower chlorophyll b and total Chl content, whether they were grown under low or high light; (ii) decreased steady-state levels of chlorophyll biosynthetic intermediates, due, perhaps, to a feedback-controlled reduction in enzyme expressions/activities; (iii) reduced electron transport rates in their intact leaves, and reduced Photosystem (PS) I, PS II and whole chain electron transport activities in their isolated thylakoids; (iv) decreased carbon assimilation in plants grown under low or high light. We suggest that reduced synthesis of chlorophyll b by antisense expression of CAO, acting at the end of Chl biosynthesis pathway, downregulates the chlorophyll b biosynthesis, resulting in decreased Chl b, total chlorophylls and increased Chl a/b. We have previously shown that the controlled up-regulation of chlorophyll b biosynthesis and decreased Chl a/b ratio by over expression of CAO enhance the rates of electron transport and CO2 assimilation in tobacco. Conversely, our data, presented here, demonstrate that-antisense expression of CAO in tobacco, which decreases Chl b biosynthesis and increases Chl a/b ratio, leads to reduced photosynthetic electron transport and carbon assimilation rates, both under low and high light. We conclude that Chl b modulates photosynthesis; its controlled down regulation/ up regulation decreases/ increases light-harvesting, rates of electron transport, and carbon assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ALA:

5-Aminolevulinic acid

ALAD:

5-Aminolevulinic acid dehydratase

cDNA:

Complementary DNA

CAO:

Chlorophyllide a oxygenase

CAOas:

Chlorophyllide a oxygenase antisense

CaMV:

Cauliflower mosaic virus

Chl:

Chlorophyll

Chlide:

Chlorophyllide

ETR:

Electron Transport Rate

GSA:

Glutamate-1-semialdehyde

IRGA:

Infra-Red Gas Analyzer

LHCP:

Light harvesting Chl protein

PAM:

Pulse amplitude modulation

PBGD:

Porphobilinogen deaminase

PCR:

Polymerase chain reaction

POR:

Protochlorophyllide oxidoreductase

Proto IX:

Protoporphyrin IX

PROTOX:

Protoporphyrinogen oxidase

ROS:

Reactive oxygen species

LL:

Low light

HL:

High light

MPE:

Mg-protoporphyrin IX monoester

WT:

Wild type

References

  • Ambastha V, Chauhan G, Tiwari BS, Tripathy BC (2020) Execution of programmed cell death by singlet oxygen generated inside the chloroplasts of Arabidopsis thaliana. Protoplasma 257:841–851

    Article  CAS  PubMed  Google Scholar 

  • Anderson J, Chow W, Goodchild D (1988) Thylakoid membrane organization in sun/shade acclimation. Aust J Plant Physiol 15:11–26

    Google Scholar 

  • Bailey S, Walters RG, Jansson S, Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213:794–801

    Article  CAS  PubMed  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Bellemare G, Bartlett SG, Chua NH (1982) Biosynthesis of chlorophyll a/b-binding polypeptides in wild type and the chlorina f2 mutant of barley. J Biol Chem 257:7762–7767

    Article  CAS  PubMed  Google Scholar 

  • Biswal AK, Pattanayak GK, Pandey SS, Leelavathi S, Reddy VS, Govindjee G, Tripathy BC (2012) Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. Plant Physiol 159:433–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Björn LO, Papageorgiou GC, Blankenship R, Govindjee G (2009) A viewpoint: why chlorophyll a? Photosynth Res 99:85–98

    Article  PubMed  Google Scholar 

  • Bogorad L (1962) Porphyrin synthesis. Methods Enzymol 5:885–895

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brzezowski P, Richter AS, Grimm B (2015) Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochim Biophys Acta 1847:968–985

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty N, Tripathy BC (1992a) Involvement of singlet oxygen in 5-aminolevulinic acid-induced photodynamic damage of cucumber (Cucumis sativus L.) chloroplasts. Plant Physiol 98:7–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty N, Tripathy BC (1992b) 5-aminolevulinic acid-induced photodynamic reactions in thylakoid membranes of cucumber (Cucumis sativus L.) cotyledons. J Plant Biochem Biotech 1:65–68

    Article  CAS  Google Scholar 

  • Dall’Osto L, Cazzaniga S, Havaux M, Bassi R (2010) Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of chlorophyll b and xanthophyll biosynthesis mutants. Mol Plant 3:576–593

    Article  PubMed  Google Scholar 

  • Dutta S, Mohanty S, Tripathy BC (2009) Role of temperature stress on chloroplast biogenesis and protein import in Pea. Plant Physiol 150:1050–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedland N, Negi S, Vinogradova-Shah T, Wu G, Ma L, Flynn S, Kumssa T, Lee CH, Sayre RT (2019) Fine-tuning the photosynthetic light harvesting apparatus for improved photosynthetic efficiency and biomass yield. Sci Reports 9(1):13028

    CAS  ADS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochem Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Govindjee G (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    CAS  Google Scholar 

  • Govindjee G (2005) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluoroscence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration. Springer, Cham, pp 1–42

    Google Scholar 

  • Grossman AR, Bhaya D, Apt KE, Kehoe DM (1995) Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annu Rev Genet 29:231–288

    Article  CAS  PubMed  Google Scholar 

  • Gupta V, Tripathy BC (2010) Effect of light quality on chlorophyll accumulation and protein expression in wheat (Triticum aestivum L.) seedlings. Int J Biotechnol Biochem 6:521–536

    Google Scholar 

  • Harper AL, von Gesjen SE, Linford AS, Peterson MP, Faircloth RS, Thissen MM, Brusslan JA (2004) Chlorophyllide a oxygenase mRNA and protein levels correlate with the chlorophyll a/b ratio in Arabidopsis thaliana. Photosynth Res 79:149–159

    Article  CAS  PubMed  Google Scholar 

  • Harrison MA, Nemson JA, Melis A (1993) Assembly and composition of the chlorophyll a-b light harvesting complex of barley (Hordeum vulgare L.): immunochemical analysis of chlorophyll b-less and chlorophyll b-deficient mutants. Photosynth Res 38:141–151

    Article  CAS  PubMed  Google Scholar 

  • Havaux M, Dall’osto L, Bassi R (2007) Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol 145:1506–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirashima M, Satoh S, Tanaka R, Tanaka A (2006) Pigment shuffling in antenna systems achieved by expressing prokaryotic chlorophyllide a oxygenase in Arabidopsis. J Biol Chem 281:15385–15393

    Article  CAS  PubMed  Google Scholar 

  • Hoober JK, Eggink LL (2001) A potential role of chlorophylls b and c in assembly of light-harvesting complexes. FEBS Lett 489:1–3

    Article  CAS  PubMed  Google Scholar 

  • Hukmani P, Tripathy BC (1992) Spectrofluorometric estimation of intermediates of chlorophyll biosynthesis: protoporphyrin IX, Mg-protoporphyrin, and protochlorophyllide. Anal Biochem 206:125–130

    Article  CAS  PubMed  Google Scholar 

  • Hukmani P, Tripathy BC (1994) Chlorophyll biosynthetic reactions during senescence of excised barley (Hordeum vulgare L. cv. IB 65) leaves. Plant Physiol 105:1295–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs NJ, Borotz SE, Guerinot ML (1989) Protoporphyrinogen Oxidation, a Step in Heme Synthesis in Soybean Root Nodules and Free-Living Rhizobia. J Bacteriol 171:573–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jilani A, Kar S, Bose S, Tripathy BC (1996) Regulation of the carotenoid content and chloroplast development by levulinic acid. Physiol Plant 96:139–145

    Article  CAS  Google Scholar 

  • Kandoi D, Mohanty S, Govindjee G, Tripathy BC (2016) Towards efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate carboxylase in Arabidopsis thaliana. Photosynth Res 130:47–72

    Article  CAS  PubMed  Google Scholar 

  • Kandoi D, Mohanty S, Tripathy BC (2018) Overexpression of plastidic maize NADP-malate dehydrogenase (ZmNADP-MDH) in Arabidopsis thaliana confers tolerance to salt stress. Protoplasma 255:547–563

    Article  CAS  PubMed  Google Scholar 

  • Kandoi D, Ruhil K, Govindjee G, Tripathy BC (2022) Overexpression of cytoplasmic C4 Flaveria bidentis carbonic anhydrase in C3 Arabidopsis thaliana increases amino acids photosynthetic potential and biomass. Plant Biotechnol J 20(8):1518–1532. https://doi.org/10.1111/pbi.13830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannagara CG, Schouboe A (1985) Biosynthesis of ∆-ALA in greening barley laves.VII.Glutamate-1-semialdehyde accumulation in gabaculine treated leaves. Carlsberg Res Com 50:179–191

    Article  Google Scholar 

  • Kim EH, Li XP, Razeghifard R, Anderson JM, Niyogi K, Pogson BJ, Chow WS (2009) The multiple roles of light-harvesting chlorophyll a/b-protein complexes define structure and optimize function of Arabidopsis chloroplasts: a study using two chlorophyll b-less mutants. Biochim Biophys Acta 1787:973–984

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Masuda T (2016) Transcriptional regulation of tetrapyrrole biosynthesis in Arabidopsis thaliana. Front Plant Sci 7:1811

    Article  PubMed  PubMed Central  Google Scholar 

  • Król M, Spangfort MD, Huner NP, Oquist G, Gustafsson P, Jansson S (1995) Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant. Plant Physiol 107:873–883

    Article  PubMed  PubMed Central  Google Scholar 

  • Larkin RM (2016) Tetrapyrrole signaling in plants. Front Plant Sci 7:1586

    Article  PubMed  PubMed Central  Google Scholar 

  • Leong T-Y, Anderson JM (1984) Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. I. Study on the distribution of chlorophyll–protein complexes. Photosynth Res 5:105–115

    Article  CAS  PubMed  Google Scholar 

  • Li T, Liu LN, Jiang CD, Liu YJ, Shi L (2014) Effects of mutual shading on the regulation of photosynthesisin field-grown sorghum. J Photochem Photobiol B Biol 137:31–38

    Article  Google Scholar 

  • Maltsev Y, Maltseva K, Kulikovskiy M, Svetlana Maltseva S (2021) Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology (basel). 10(10):1060. https://doi.org/10.3390/biology10101060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda T, Tanaka A, Melis A (2003) Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. Plant Mol Biol 51:757–771

    Article  CAS  PubMed  Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058:87–106

    Article  CAS  Google Scholar 

  • Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M, Smith AG, Tanaka A, Terry MJ (2010) The cell biology of tetrapyrroles: a life and death struggle. Trends Plant Sci 15:488–498

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra A, Tripathy BC (2003) Developmental changes in sub-plastidic distribution of chlorophyll biosynthetic intermediates in Cucumber (Cucumis sativus L.). J Plant Physiol 160:9–15

    Article  CAS  PubMed  Google Scholar 

  • Murray DL, Kohorn BD (1991) Chloroplasts of Arabidopsis thaliana homozygous for the ch-1 locus lack chlorophyll b, lack stable LHCPII and have stacked thylakoids. Plant Mol Biol 16:71–79

    Article  CAS  PubMed  Google Scholar 

  • Nagata N, Satoh S, Tanaka R, Tanaka A (2004) Domain structures of chlorophyllide a oxygenase of green plants and Prochlorothrix hollandica in relation to catalytic functions. Planta 218:1019–1025

    Article  CAS  PubMed  Google Scholar 

  • Nakagawara E, Sakuraba Y, Yamasato A, Tanaka R, Tanaka A (2007) Clp protease controls chlorophyll b synthesis by regulating the level of chlorophyllide a oxygenase. Plant J 49:800–809

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H, Nozue H, Suzuki K, Kaneko Y, Taguchi G, Hayashida N (2005) Characterization of the Arabidopsis thaliana mutant pcb2 which accumulates divinyl chlorophylls. Plant and Cell Physiol 46:467–473

    Article  CAS  Google Scholar 

  • Nellaepalli S, Kodru S, Tirupathi M, Subramanyam R (2012) Anaerobiosis induced state transition: a non-photochemical reduction of PQ pool mediated by NDH in Arabidopsis thaliana. PLoS ONE 7:e49839

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Nguyen MK, Shih TH, Lin SH, Huang WD, Yang CM (2020) Transcription analysis of chlorophyll biosynthesis in wildtype and chlorophyll b-lacking rice (Oryza sativa L.). Photosynthetica 58:702–711. https://doi.org/10.32615/ps.2020.022

    Article  CAS  Google Scholar 

  • Nguyen MK, Shih TH, Lin SH, Lin JW, Nguyen HC, Yang ZW, Yang CM (2021) Transcription profile analysis of chlorophyll biosynthesis in leaves of wild-type and chlorophyll b-deficient rice (Oryza sativa L.). Agriculture 11:401

    Article  CAS  Google Scholar 

  • op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Göbel C, Feussner I, Nater M, Apel K (2013) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332

    Article  Google Scholar 

  • Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP, Moore TA, Moroney J, Niyogi KK, Parry MA, Peralta-Yahya PP, Prince RC, Redding KE, Spalding MH, van Wijk KJ, Vermaas WF, von Caemmerer S, Weber AP, Yeates TO, Yuan JS, Zhu XG (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci U S A 112:8529–8536

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Oster U, Tanaka R, Tanaka A, Rudiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21:305–310

    Article  CAS  PubMed  Google Scholar 

  • Pattanayak GK, Tripathy BC (2002) Catalytic function of a novel protein protochlorophyllide oxidoreductase C of Arabidopsis thaliana. Biochem Biophys Res Commun 291:921–924

    Article  CAS  PubMed  Google Scholar 

  • Pattanayak GK, Tripathy BC (2011) Overexpression of protochlorophyllide oxidoreductase C regulates oxidative stress in Arabidopsis. PLoS ONE 6:e26532

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Pattanayak GK, Biswal AK, Reddy VS, Tripathy BC (2005) Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants. Biochem Biophys Res Com 326:466–471

    Article  CAS  PubMed  Google Scholar 

  • Perrine Z, Negi S, Sayre RT (2012) Optimization of photosynthetic light energy utilization by microalgae. Algal Res 1:134–142

    Article  Google Scholar 

  • Ping H, Jie M, Shujing K, Sanfeng L, Xianmei W, Longjun Z, CAOlin L, Rui H, Huiying H, Shan L, Yuchun R, Xudong Z, Guosheng X, Qian Q, Guo L, Yuexing W (2023) Chlorophyllide-a Oxygenase 1 (OsCAO1) over-expression affects rice photosynthetic rate and grain yield. Rice Sci 30:87–91

    Article  Google Scholar 

  • Porra RJ, Thompson WA, Kriedmann PA (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Ramel F, Ksas B, Akkari E, Mialoundama AS, Monnet F, Krieger-Liszkay A, Ravanat JL, Mueller MJ, Bouvier F, Havaux M (2013) Light-induced acclimation of the Arabidopsis chlorina1 mutant to singlet oxygen. Plant Cell 25:1445–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebeiz CA, Reddy KN, Nandihalli UB, Velu J (1990) Tetrapyrrole-dependent photodynamic herbicides. Photochem Photobiol 52:1099–1117

    Article  CAS  Google Scholar 

  • Richter AS, Pérez-Ruiz JM, Cejudo FJ, Grimm B (2018) Redox-control of chlorophyll biosynthesis mainly depends on thioredoxins. FEBS Lett 592(18):3111–3115

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Tanaka R, Yamasato A, Tanaka A (2009) Determination of a chloroplast degron in the regulatory domain of chlorophyllide a oxygenase. J Biol Chem 284:36689–36699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuraba Y, Yokono M, Akimoto S, Tanaka R, Tanaka A (2010) Deregulated chlorophyll b synthesis reduces the energy transfer rate between photosynthetic pigments and induces photodamage in Arabidopsis thaliana. Plant Cell Physiol 51:1055–1065

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Balazadeh S, Tanaka R, Mueller-Roeber B, Tanaka A (2012) Overproduction of chl B retards senescence through transcriptional reprogramming in Arabidopsis. Plant Cell Physiol 53:505–517. https://doi.org/10.1093/pcp/pcs006

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method an overview. In: PapageorgiouGovindjee GC (ed) Chlorophyll a fluorescence: a signature of photosynthesis Advances in photosynthesis and respiration. Springer, Dordrecht, pp 279–319

    Chapter  Google Scholar 

  • Schreiber U, Bilger W, Neubaue C (1995) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of Photosynthesis. Springer Study Edition, Springer, Berlin, Heidelberg, pp 49–70

    Chapter  Google Scholar 

  • Shemin D (1962) δ-Aminolevulinic acid dehydrase from Rhodopseudomonas spheroids. In: Press A (ed) Methods in Enzymology Colowick SP and Kaplan NO. Inc, New York, pp 883–884

    Google Scholar 

  • Shevela D, Bjorn L, Govindjee G (2019) Photosynthesis: Solar Energy for Life. World Scientific, Singapore

    Google Scholar 

  • Sood S, Gupta V, Tripathy BC (2005) Photoregulation of the greening process of wheat seedlings grown in red light. Plant Mol Biol 59:269–287

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Kawano K (1966) Effect of mutual shading on dry-matter production in the tropical rice plant. Plant Soil 24:128–144

    Article  Google Scholar 

  • Tanaka R, Tanaka A (2005) Effects of chlorophyllide a oxygenase overexpression on light acclimation in Arabidopsis thaliana. Photosynth Res 85:327–340

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Tanaka R (2006) Chlorophyll metabolism. Curr Opin Plant Biol 9:248–255

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95:12719–12723

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Tewari AK, Tripathy BC (1998) Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol 117:851–858

    Article  CAS  Google Scholar 

  • Thornber JP, Highkin HR (1974) Composition of the photosynthetic apparatus of normal barley leaves and a mutant lacking chlorophyll b. Eur J Biochem 41:109–116

    Article  CAS  PubMed  Google Scholar 

  • Tripathy BC, Chakraborty N (1991) 5-Aminolevulinic acid induced photodynamic damage of the photosynthetic electron transport chain of cucumber (Cucumis sativus L.) cotyledons. Plant Physiol 96:761–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signaling Behavior 7:1621–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathy BC, Pattanayak GK (2010) Singlet oxygen-induced stress in plants. In: Rebeiz CA, Benning C, Bohnert HJ, Daniell H, Hoober JK, Lichtenthaler HK, Portis AR, Tripathy BC (eds) The Chloroplast: Basics and Applications. Springer, Cham, pp 397–412

    Chapter  Google Scholar 

  • Tripathy BC, Pattanayak GK (2012) Chlorophyll biosynthesis in higher plants. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation. Springer, Cham, pp 63–94

    Chapter  Google Scholar 

  • Tripathy BC, Mohapatra A, Gupta I (2007) Impairment of the photosynthetic apparatus by oxidative stress induced by photosensitization reaction of protoporphyrin IX. Biochim Biophys Acta 1767:860–868

    Article  CAS  PubMed  Google Scholar 

  • Voitsekhovskaja OV, Tyutereva EV (2015) Chlorophyll b in angiosperms: functions in photosynthesis, signaling and ontogenetic regulation. J PlAnt Physiol 189:51–64

    Article  CAS  PubMed  Google Scholar 

  • Von Wettstein D, Giugh S, Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7:1039–1057. https://doi.org/10.1105/tpc.7.7.1039

    Article  Google Scholar 

  • Wang P, Grimm B (2021) Connecting chlorophyll metabolism with accumulation of the photosynthetic apparatus. Trends Plant Sci 26:484–495

    Article  PubMed  Google Scholar 

  • Wang P, Richter AS, Kleeberg JR, Geimer S, Grimm B (2020) Post-translational coordination of chlorophyll biosynthesis and breakdown by BCMs maintains chlorophyll homeostasis during leaf development. Nat Commun 11(1):1254. https://doi.org/10.1038/s41467-020-14992-9

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Yamasato A, Nagata N, Tanaka R, Tanaka A (2005) The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis. Plant Cell 17:1585–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasato A, Tanaka R, Tanaka A (2008) Loss of the N-terminal domain of chlorophyllide a oxygenase induces photodamage during greening of Arabidopsis seedlings. BMC Plant Biol 8:64. https://doi.org/10.1186/1471-2229-8-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zivcak M, Brestic M, Kalaji HM, Govindjee. (2014) Photosynthetic responses of sun-and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light? Photosynth Res 119:339–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by J.C. Bose Fellowship grant from the Science and Engineering Research Board (SERB), Government of India to BCT.

Author information

Authors and Affiliations

Authors

Contributions

AKB, GKP, KR, SSM and SL carried out experiments. AKB, GKP and BCT designed the experiments and analyzed the data. AKB, GKP, DK, GG, and BCT wrote the manuscript.

Corresponding author

Correspondence to Baishnab C. Tripathy.

Ethics declarations

Conflict of interest

The authors declare no competing financial and non-financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submitted to the Special issue in honour of P.V. Sane.

Supplementary Information

Below is the link to the electronic supplementary material.

12298_2023_1395_MOESM1_ESM.pptx

Fig. S1. Chlorophyll a content of wild-type (WT) and CAO antisense (CAOas) tobacco plants grown under low-light (LL) and high-light (HL) in the greenhouse. Plants were grown for up to 30 days under light intensity of 300 µmol photons m-2s-1; then, they were transferred to LL (70–80 µmol photons m-2s-1) and HL (700–800 µmol photons m-2s-1) for additional 4 weeks. Each data point is the average of seven replicates and error bars represent the mean ±SE; asterisks indicate significant differences determined by ANOVA-test along with Dunnett’s post hoc test compared to WT (*P < 0.05, **P < 0.01). Statistical tests were conducted between WT and mutant within the same treatment. Fig. S2. Effective quantum yield of PSII (φPSII) of WT and CAOas plants. LL- and HL-grown WT and CAOas plants were dark adapted for 20 min before measurements were made, using PAM 2100 fluorometer. фPSII was estimated from data obtained by this fluorometer at different light intensities (up to 900 µmol photons m-2s-1) as described in the methods. Each data point is the average of five replicates; error bars represent the ±SE; asterisks indicate significant differences determined by ANOVA-test along with Dunnett’s post hoc test compared to WT (*P < 0.05, **P < 0.01). Statistical tests were conducted between WT and mutant within the same treatment. Fig. S3. Non-photochemical quenching (NPQ) of WT and CAOas plants. LL- and HL-grown WT and CAOas plants were dark adapted for 20 min before measurements were made, using PAM 2100 fluorometer. NPQ of excited states of chlorophyll was estimated from data obtained by this fluorometer at different light intensities (up to 900 µmol photons m-2s-1) as described in the methods. Each data point is the average of five replicates; error bars represent the ±SE; asterisks indicate significant differences determined by ANOVA-test along with Dunnett’s post hoc test compared to WT (*P < 0.05, **P < 0.01). The experiment was done three times. Statistical tests were conducted between WT and mutant within the same treatment. (PPTX 68 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswal, A.K., Pattanayak, G.K., Ruhil, K. et al. Reduced expression of chlorophyllide a oxygenase (CAO) decreases the metabolic flux for chlorophyll synthesis and downregulates photosynthesis in tobacco plants. Physiol Mol Biol Plants 30, 1–16 (2024). https://doi.org/10.1007/s12298-023-01395-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-023-01395-5

Keywords

Navigation