Skip to main content

Advertisement

Log in

Growth, oil and physiological parameters of three mint species grown under saline stress levels

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Salinity stress is known to have a detrimental effect on mint plants. The aim of the present work was to investigate the possible effects of salinity stress on Mentha spicata, Mentha piperita and Mentha arvensis. Plants were exposed to salinity stress using different concentrations of NaCl (0, 50, 100, 150 mM). Under salinity stress, plant growth, oil yield, content and composition, as well as physiological parameters were adversely affected. Among the studied species, M. arvensis experienced the maximum loss in terms of oil percentage. Physiological characteristics and oil composition were significantly affected with intensification of salt stress. For instance, in M. spicata, with increasing salinity stress, piperitone oxide was decreased from 78.4% in control to 38.0% in 150 mM NaCl, whereas menthol was increased from 1.0 to 37.1%. Moreover, in M. piperita, menthone, isomenthone and limonene were all increased in low stress and then were decreased in high stress conditions. In M. arvensis, the major compound; menthol was not affected but the content of menthone increased. It could be concluded that the salinity stress is detrimental but might be useful and may be recommended as an appropriate approach in improving the oil quality or to producing specific compounds under mild or moderate stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbaszadeh B, Valadabadi SA, Farahani HA, Darvishi HH (2009) Studying of essential oil variations in leaves of Mentha species. Afr J Plant Sci 3:217–221

    Google Scholar 

  • Abd El-Wahab MA (2006) The efficiency of using saline and fresh water irrigation as alternating methods of irrigation on the productivity of Foeniculum vulgare Mill subsp. Vulgare var. Vulgare under North Sinai conditions. Res J Agric Biol Sci 2(6):571–277

    Google Scholar 

  • Abdelkader AF, Aronsson H, SolymosiK, Böddi B, Sundqvist C (2007a) High salt stress induces swollen prothylakoids in dark-grown wheat and alters both prolamellar body transformation and reformation after irradiation. J Exp Bot 58(10):2553–2564. https://doi.org/10.1093/jxb/erm085

    Article  CAS  PubMed  Google Scholar 

  • Abdelkader AF, Aronsson H, Sundqvist C (2007b) High salt stress in wheat leaves causes retardation of chlorophyll accumulation due to a limited rate of protochlorophyllide formation. Physiol Plant 130:157–166. https://doi.org/10.1111/j.1399-3054.2007.00885.x

    Article  CAS  Google Scholar 

  • Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectroscopy. Allured Publishing Co., Carol Stream

    Google Scholar 

  • Ahmad P, Prasad MNV (2011) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer

    Google Scholar 

  • Alam MA, Juraimi AS, Rafii MY, Hamid AA, Aslani F, Alam MZ (2015) Effects of salinity and salinity-induced augmented bioactive compounds in purslane (Portulaca oleracea L.) for possible economical use. Food Chem 169:439–447

    Article  PubMed  Google Scholar 

  • Amier H, Craker LE (2007) In-vitro selection for stress tolerant spearmint. In: Janick J, Whipkey A (eds) Issues in new crops and new uses. ASHS Press, Alexandria, pp 306–310

    Google Scholar 

  • Aziz EE, Hussein Al-Amier, Lyle EC (2008) Influence of salt stress on growth and essential oil production in peppermint, pennyroyal, and apple mint. J Herbs Spices Med 14(1–2):77–87. https://doi.org/10.1080/10496470802341375

    Article  CAS  Google Scholar 

  • Baatour O, Kaddour R, WannesAidi W, Lachaal M, Marzouk B (2010) Salt effects on the growth, mineral nutrition, essential oil yield and composition of marjoram (Origanum majorana). Acta Physiol Plant 32:45–51

    Article  CAS  Google Scholar 

  • Baghalian K, Haghiry A, Naghavi MR, Mohammadi A (2008) Effect of saline irrigation water on agronomical and phytochemical characters of chamomile (Matricaria recutita L). Sci Hortic 116:437–441

    Article  CAS  Google Scholar 

  • Barbieria G, Vallone S, Orsinic F, Paradisoa R, Pascalea SD, Zakharovb FN, Maggioa A (2012) Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L). J Plant Physiol 169:1737–1746

    Article  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • BelaqzizR RA, Abbad A (2009) Salt stress effects on germination, growth and essential oil content of an endemic thyme species in Morocco (Thymus maroccanus ball). J Appl Sci Res 5:858–886

    Google Scholar 

  • Ben-Asher J, Tsuyuki I, Bravdo BA, Sagih M (2006) Irrigation of grapevines with saline water: I. Leaf area index, stomatal conductance, transpiration and photosynthesis. Agric Water Manag 83(1–2):13–21

    Article  Google Scholar 

  • Bistgani ZE, Hashemi M, DaCosta M, Craker L, MaggiF, Morshedloo MR (2019) Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind Crops Prod 135:311–320

    Article  CAS  Google Scholar 

  • Chondraki S, Tzerakis C, Tzortzakis N (2012) Influence of sodium chloride and calcium foliar spray on hydroponically grown parsley in nutrient film technique system. J Plant Nutr 35(10):1457–1467

    Article  CAS  Google Scholar 

  • Chrysargyris A, Michailidi E, Tzortzakis N (2018) Physiological and biochemical responses of Lavandula angustifolia to salinity under mineral foliar application. Front Plant Sci 9:489. https://doi.org/10.3389/fpls.2018.00489

    Article  PubMed  PubMed Central  Google Scholar 

  • Chrysargyris A, Solomou M, Petropoulos SA, Tzortzakis N (2019) Physiological and biochemical attributes of Mentha spicata when subjected to saline conditions and cation foliar application. J Plant Physiol 232:27–38

    Article  CAS  PubMed  Google Scholar 

  • Cordovilla MP, Bueno M, Aparicio C, Urrestarazu M (2014) Effects of salinity and the interaction between Thymus vulgaris and Lavandula angustifolia on growth, ethylene production and essential oil contents. J Plant Nutr 37(6):875–888

    Article  CAS  Google Scholar 

  • Dalton FN, Maggio A, Piccinni G (2000) Simulation of shoot chloride accumulation, separation of physical and biochemical processes governing plant salt tolerance. Plant Soil 219:1–11

    Article  CAS  Google Scholar 

  • Dos Santos TB, Ribas AF, de Souza SGH, Budzinski IGF, Domingues DS (2022) Physiological responses to drought, salinity, and heat stress in plants: a review. Stresses 2:113–135. https://doi.org/10.3390/stresses2010009

    Article  Google Scholar 

  • Ekren S, SonmezC, Ozcakal E, Kurttaş YSK, Bayram E, Gurgulu H (2012) The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimum basilicum L). Agric Water Manag 109:155–161

    Article  Google Scholar 

  • El Hassani FZ (2020) Characterization, activities, and ethnobotanical uses of Mentha species in Morocco. Heliyon 6(11):e05480

    Article  PubMed  PubMed Central  Google Scholar 

  • El Menyiy N, Hanae NM, El Nasreddine O, Afaf EIB, Saad B, Mouna M, Abdelaali B (2022) Medicinal uses, phytochemistry, pharmacology, and toxicology of Mentha spicata. Evid Based Complement Altern Med 2022, Article ID 7990508

  • El-Danasoury M, Al-Amier H, El-Din Helaly A, Aziz EE, Craker L (2010) Essential oil and enzyme activity in spearmint under salt stress. J Herbs Spices Med Plants 16:136–145

    Article  CAS  Google Scholar 

  • Estaji A, Roosta HR, Rezaei SA, Hosseini SS, Niknam F (2018) Morphological, physiological and phytochemical response of different Satureja hortensis L. Accessions to salinity in a greenhouse experiment. Food Chem 75:197–202

    Google Scholar 

  • Farsaraei S, Moghaddam M, Pirbalouti AG (2020) Changes in growth and essential oil composition of sweet basil in response of salinity stress and superabsorbents application. Sci Hortic 271:109465

    Article  CAS  Google Scholar 

  • Flowers TJ, Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders? Agric Water Manag 78:15–24. https://doi.org/10.1016/j.agwat.2005.04.015

    Article  Google Scholar 

  • García-Sánchez F, Jifon JL, Carvajal M, Syvertsen JP (2002) Gas exchange, chlorophyll and nutrient contents in relation to Na+ and Cl accumulation in ‘Sunburst’mandarin grafted on different rootstocks. Plant Sci 162(5):705–712

    Article  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom. https://doi.org/10.1155/2014/701596

    Article  Google Scholar 

  • Heidari M, Sarani S (2012) Growth, biochemical components and ion content of chamomile (Matricaria chamomilla L.) under salinity stress and iron deficiency. J Saudi Soc Agric Sci 11(1):37–42

    CAS  Google Scholar 

  • Hendawy TSF, Khalid KA (2005) Response of sage (Salvia officinalis L.) plants to zinc application under different salinity levels. J Appl Sci Res 1:147–155

    Google Scholar 

  • Hiscox JT, Israelstam G (1979) A method forthe extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Karlidag H, Yildirim E, Turan M (2011) Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria ananassa). Sci Hortic 130(1):133–140

    Article  CAS  Google Scholar 

  • Kasrati A, Jamali CA, Bekkouche K, Wohlmuth H, Leach D, Abbad A (2014) Plant growth, mineral nutrition and volatile oil composition of Mentha suaveolens subsp. Timija (Briq.) Harley cultivated under salt stress conditions. Ind Crop Prod 59:80–84

    Article  CAS  Google Scholar 

  • Khalid KH, Cai W (2011) The effects of mannitol and salinity stresses on growth and biochemical accumulations in lemon balm. Acta Ecol Sin 31:112–120

    Article  Google Scholar 

  • Khalid K, Jaime A, Teixeira da S (2010) Yield, essential oil and pigment content of Calendula officinalis L. Flower heads cultivated under salt stress conditions. Sci Hortic 126:297–305

    Article  CAS  Google Scholar 

  • Khalvandi M, Ameriana M, Pirdashti H, Keramati S, Hosseini J (2019) Essential oil of peppermint in symbiotic relationship with piriformo sporaindica and methyl jasmonate application under saline condition. Ind Crop Prod 127:195–202

    Article  CAS  Google Scholar 

  • Khorasaninejad S, Mousavi A, Soltanloo H, Hemmati K, Khalighi A (2010) The effect of salinity stress on growth parameters, essential oil yield and constituent of peppermint (Mentha piperita L). World Appl Sci J 11(11):1403–1407

    Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Mbarki S, Sytar O, Cerda A, Zivcak M, Rastogi A, He X, Zoghlami A, Abdelly C, Brestic M (2018) Strategies to mitigate the salt stress effects on photosynthetic apparatus and productivity of crop plants. In: Salinity responses and tolerance in plants, vol 1, pp 85–136. Springer, Cham

  • Mehdizadeh L, Moghaddam M, Lakzian A (2019) Effect of biochar on growth characteristics and sodium to potassium ratio of summer savory (Satureja hortensis L.) under NaCl stress. Env Stresses Crop Sci 12(2):595–606

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant cell environ 25(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Murkute A, Sharma S, Singh S (2006) Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Hortic Sci 33:70–76

    Article  Google Scholar 

  • Muscolo A, Junker A, Klukas C, Weigelt-Fischer K, Riewe D, Altmann T (2015) Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. J Exp Bot 66(18):5467–5480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ounoki R, Ágh F, Hembrom R, Ünnep R, Szögi-Tatár B, Böszörményi A, Solymosi K (2021) Salt stress affects plastid ultrastructure and photosynthetic activity but not the essential oil composition in spearmint (Mentha spicata L. var. Crispa “Moroccan”). Front Plant Sci 12:2253

    Article  Google Scholar 

  • Said-Al Ahl HAH, Mahmoud AA (2010) Effect of zinc and/or iron foliar application on growth and essential oil of sweet basil (Ocimum basilicum L.) under salt stress. Ozean J Appl Sci 3(1):97–111

    Google Scholar 

  • Santos CV (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Hortic 103:93–99

    Article  CAS  Google Scholar 

  • Sarmoum R, Haid S, Biche M, Djazouli Z, Zebib B, Merah O (2019) Effect of salinity and water stress on the essential oil components of rosemary (Rosmarinus officinalis L). Agronomy 9(5):214

    Article  CAS  Google Scholar 

  • Stanojevic LP, Marjanovic-Balaban ZR, Kalaba VD, Stanojevic JS, Cvetkovic DJ, Cakic MD (2017) Chemical composition, antioxidant and antimicrobial activity of basil (Ocimum basilicum L.) essential oil. J Essent Oil Bear Plants 20(6):1557–1569

    Article  CAS  Google Scholar 

  • Taarit MB, Msaada K, Hosni K, Marzouk B (2012) Physiological changes, phenolic content and antioxidant activity of Salvia officinalis L. grown under saline conditions. J Sci Food Agric 92(8):1614–1619

    Article  PubMed  Google Scholar 

  • Tarchoune I, Sgherri C, Izzo R, Lachaal M, Ouerghi Z, Navari-Izzo F (2010) Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physoil Biochem 48:772–777

    Article  CAS  Google Scholar 

  • Tarchoune I, Degl’Innocenti E, Kaddour R, Guidi L, Lachaâl M, Navari-Izzo F, Ouerghi Z (2012) Effects of NaCl or Na2SO4 salinity on plant growth, ion content and photosynthetic activity in Ocimum basilicum L. Acta Physiol Plant 34(2):607–615

    Article  CAS  Google Scholar 

  • Tarchoune I, Sgherri C, Baâtour O, Izzo R, Lachaâl M, Navari-Izzo F, Ouerghi Z (2013) Effects of oxidative stress caused by NaCl or Na2SO4 excess on lipoic acid and tocopherols in Genovese and Fine basil (Ocimum basilicum). Ann Appl Biol 163(1):23–32

    Article  CAS  Google Scholar 

  • Tavakkoli E, Rengasamy P, Mcdonald GK (2010) High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61:4449–4459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valifard M, Mohsenzadeh S, Kholdebarin B, Rowshan V (2014) Effects of salt stress on volatile compounds, total phenolic content and antioxidant activities of Salvia mirzayanii. S Afr J Bot 93:92–97

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: toward genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Zhang C, Chu LY, Shao HB (2007) Responses of higher plants to a biotic stress an agricultural sustainable development. J Plant Interact 2:135–147. https://doi.org/10.1080/17429140701586357

    Article  CAS  Google Scholar 

  • Xue F, Liu W, Cao H, Song L, Ji S, Tong L, Ding R (2021) Stomatal conductance of tomato leaves is regulated by both abscisic acid and leaf water potential under combined water and salt stress. Physiol Plant 172:2070–2078. https://doi.org/10.1111/ppl.13441

    Article  CAS  PubMed  Google Scholar 

  • Yildirim E, Turan M, Guvenc I (2008) Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. J Plant Nutr 31:593–612

    Article  CAS  Google Scholar 

  • Yildiz M, İrem P, Aslinur Ç, Yasin Ö, Ramazan B (2020) Plant responses to salt stress. In: Plant breeding-current and future views. Intech Open. https://doi.org/10.5772/intechopen.93920

  • Yu X, Liang C, Chen J, Qi X, Liu Y, Li W (2015) The effects of salinity stress on morphological characteristics, mineral nutrient accumulation and essential oil yield and composition in Mentha Canadensis L. Sci Hortic 197:579–583. https://doi.org/10.1016/j.scienta.2015.10.023

    Article  CAS  Google Scholar 

  • Zhang JL, Flowers TJ, Wang SM (2010) Mechanisms of sodium uptake by roots of higher plants. Plant Soil 326:45–60

    Article  CAS  Google Scholar 

  • Zrig A, Tounektia T, Abd El gawad H, Hegab MM, Oueled Alia S, Khemir H (2016) Essential oils, amino acids and polyphenols changes in salt-stressed Thymus vulgaris exposed to open–field and shade enclosure. Ind Crops Prod 91:223–230

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi, India for financial support (HCP0007); Director, CSIR-CIMAP for encouragement and the Central Instrument Facility (CIMAP) for GC/MS analysis.

Funding

This work was supported by the Council of Scientific and Industrial Research [HCP0007].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipender Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Punetha, A., Chauhan, A. et al. Growth, oil and physiological parameters of three mint species grown under saline stress levels. Physiol Mol Biol Plants 29, 1061–1072 (2023). https://doi.org/10.1007/s12298-023-01337-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-023-01337-1

Keywords

Navigation