Skip to main content

Advertisement

Log in

Precursors and elicitor induced enhancement of cell biomass and phenolic compounds in cell suspensions of Indian basil-Ocimum basilicum (CIM-Saumya)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

CIM-Saumya is an improved, methyl chavicol rich variety of Ocimum basilicum (Family—Lamiaceae), developed by Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants. This plant possesses analgesic, anti-ulcerogenic, anti-inflammatory, anti-oxidant, cardiac stimulant, Central Nervous System depressant, hepatoprotective and immunomodulator activities due to the presence of various phytoconstituents. Among them rosmarinic acid, caffeic acid and ferulic acid are the three major phenolic compounds responsible for its therapeutic utility. These compounds are produced in very low amounts in the in vivo plants. Therefore, the present study has been conducted for establishment of cell suspensions, optimization of inoculums size, growth kinetics and screening of elicitor and precursors for the accumulation of cell biomass and the production of the three important phenolic compounds in cell suspension of O. basilicum (CIM-Saumya). Leaf derived friable callus was used for establishing the cell suspension in liquid Murashige and Skoog’s medium fortified with 1 g/L casein hydrolysate + 2.26 µM 2,4-dichlorophenoxyacetic acid + 0.465 µM kinetin + 2.68 µM naphthalene acetic acid. The growth kinetic analysis pattern of cell suspension revealed the maximum biomass increments (% BI = 486.7) and production of RA 8.086 mg/g dry weight was found in 30th day harvested cells. Whereas, the other two phenolic compounds i.e. ferulic acid (0.0125 mg/g dry weight) and caffeic acid (0.38 mg/g dry weight) was recorded highest on 25th day of growth cycle. In the present study, one biotic elicitor i.e. yeast extract and three precursors [peptone, tryptone and lactalbumin hydrolysate] were tested, among them, lactalbumin hydrolysate (100 mg/L; added at 16th day) treated cells recorded highest estimated phenolic compounds yield (251.5 mg/L; 6.81 fold compared to the control) and biomass increments i.e. % BI = 1207 with 1.85 fold compared to the control. The highest rosmarinic acid content i.e. 25.47 mg/g DW (4.4 fold compared to the control) and 24.42 mg/g dry weight (4.1 folds compared to the control) was noticed in 30th day harvested cells treated with yeast extract (1 g/L on 0 day) and lactalbumin hydrolysate (100 mg/L added on 16th day), respectively. While caffeic acid content (0.91 mg/g dry weight) showed 2.9 folds higher compared to the control in cells treated with peptone 200 mg/L added on 16th day of culture cycle. All the treated cells showed enhanced phenylalanine ammonia-lyase enzyme activity with highest specific activity in lactalbumin hydrolysate followed by tryptone, peptone, and yeast extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Açıkgöz MA (2020) Establishment of cell suspension cultures of Ocimum basilicum L. and enhanced production of pharmaceutical active ingredients. Ind Crops Prod 148:Article 112278.

  • Ahmed AF, Attia FAK, Liu Z, Li C, Wei J, Kang W (2019) Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Sci Hum Wellness 8:299–305. https://doi.org/10.1016/j.fshw.2019.07.004

    Article  Google Scholar 

  • Ajungla L, Patil PP, Barmukh RB, Nikam TD (2009) Influence of biotic and abiotic elicitors on accumulation of hyoscyamine and scopolamine in root cultures of Datura metel L. Indian J Biotechnol 8:317–322

    CAS  Google Scholar 

  • Angelova Z, Georgiev S, Roos W (2006) Elicitation of plants. Biotechnol Biotechnol Eq 20(2):72–83

    Article  CAS  Google Scholar 

  • Baldim JL, Silveira JGF, Almeida AP, Carvalho PLN, Rosa W, Schripsema J, Chagas-Paula DA, Soares MG, Luiz JHH (2018) The synergistic effects of volatile constituents of Ocimum basilicum against food borne pathogens. Ind Crops Prod 112:821–829. https://doi.org/10.1016/j.indcrop.2017.12.016

    Article  CAS  Google Scholar 

  • Duran RE, Kilic S, Coskun Y (2019) Melatonin influence on in vitro callus induction and phenolic compound production in sweet basil (Ocimum basilicum L.). In Vitro Cell Dev Biol Plant 55(4):468–475

    Article  CAS  Google Scholar 

  • Espíndola KMM, Ferreira RG, Narvaez LEM, Rosario ACRS, da Silva AHM, Silva AGB, Vieira APO, Monteiro MC (2019) Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front Oncol 9:541

    Article  PubMed  PubMed Central  Google Scholar 

  • Fallarini S, Miglio G, Paoletti T, Minassi A, Amoruso A, Bardelli C, Brunelleschi S, Lombardi G (2009) Clovamide and rosmarinic acid induce neuroprotective effects in in vitro models of neuronal death. Br J Pharmacol 157:1072–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Hou Z, Zhang X, Yang D, Liang Z (2018) Diverse specialized metabolism and their responses to lactalbumin hydrolysate in hairy root cultures of Salvia miltiorrhiza Bunge and Salvia castanea Diels f. tomentosa Stib. Biochem Eng J 131:58–69

    Article  CAS  Google Scholar 

  • Hakkim EL, Kalyani S, Essa M, Girija S, Song H (2011) Production of rosmarinic in Ocimum sanctum cell cultures by the influence of sucrose, phenylalanine, yeast extract and methyl jasmonate. Int J Biol Med Res 2(4):1070–1074

    Google Scholar 

  • Heywood VH (1978) Flowering plants of the world. Oxford University Press, Oxford

    Google Scholar 

  • Jakovljević D, Stanković M, Warchoł M, Skrzypek E (2022) Basil (Ocimum L.) cell and organ culture for the secondary metabolites production: a review. Plant Cell Tiss Org Cult 149:61–79

    Article  Google Scholar 

  • Jayasinghe C, Goto N, Aoki T, Wada S (2003) Phenolics composition and antioxidant activity of sweet basil (Ocimum basilicum L.). J Agric Food Chem 51:4442–4449

    Article  CAS  PubMed  Google Scholar 

  • Jones AMP, Saxena PK (2013) Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: a novel approach to reduce oxidative browning in plant tissue culture. PLoS ONE 8(10):e76802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SM, Min JY, Kim YD, Karigar CS, Kim SW, Goo GH, Choi MS (2009) Effect of biotic elicitors on the accumulation of bilobalide and ginkgolides in Ginkgo biloba cell cultures. J Biotechnol 139(1):84–88. https://doi.org/10.1016/j.jbiotec.2008.09.007

    Article  CAS  PubMed  Google Scholar 

  • Kintzios S, Makri O, Panagiotopoulos E, Scapeti M (2003) In vitro rosmarinic acid accumulation in sweet basil (Ocimum basilicum L.). Biotechnol Lett 25:405–408. https://doi.org/10.1023/A:1022402515263

    Article  CAS  PubMed  Google Scholar 

  • Kintzios S, Kollias H, Straitouris E, Makri O (2004) Scale-up micropropagation of sweet basil (Ocimum basilicum L.) in an airlift bioreactor and accumulation of rosmarinic acid. Biotechnol Lett 26(6):521–523

    Article  CAS  PubMed  Google Scholar 

  • Kwon DY, Li X, Kim JK, Park SU (2017) Molecular cloning and characterization of rosmarinic acid biosynthetic genes and rosmarinic acid accumulation in Ocimum basilicum L. Saudi J Biol Sci 26:469–472

    Article  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nadeem M, Abbasi BH, Younas M, Ahmad W, Zahir A, Hano C (2019) LED-enhanced biosynthesis of biologically active ingredients in callus cultures of Ocimum basilicum. J Photochem Photobiol B Biol 190:172–178. https://doi.org/10.1016/j.jphotobiol.2018.09.011

    Article  CAS  Google Scholar 

  • Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79

    CAS  Google Scholar 

  • Nazir M, Tungmunnithum D, Bose S, Drouet S, Garros L, Giglioli-Guivarc’h N, Abbasi BH, Hano C (2019) Differential production of phenylpropanoid metabolites in callus cultures of Ocimum basilicum L. with distinct in vitro antioxidant activities and in vivo protective effects against UV stress. J Agric Food Chem 67(7):1847–1859. https://doi.org/10.1021/acs.jafc.8b05647

    Article  CAS  PubMed  Google Scholar 

  • Ogata A, Tsuruga A, Matsuno M, Mizukami H (2004) Elicitor-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures: activities of rosmarinic acid synthase and the final two cytochrome P450-catalyzed hydroxylations. Plant Biotechnol 21:393–396

    Article  CAS  Google Scholar 

  • Pandey H, Pandey P, Singh S, Gupta R, Banerjee S (2015) Production of anti-cancer triterpene (betulinic acid) from callus cultures of different Ocimum species and its elicitation. Protoplasma 252(2):647–655. https://doi.org/10.1007/s00709-014-0711-3

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Singh S, Banerjee S (2019) Ocimum basilicum suspension culture as resource for bioactive triterpenoids: yield enrichment by elicitation and bioreactor cultivation. Plant Cell Tiss Organ Cult 137(1):65–75. https://doi.org/10.1007/s11240-018-01552-9

    Article  CAS  Google Scholar 

  • Park SU, Uddin MR, Xu H, Kim YK, Lee SY (2008) Biotechnological applications for rosmarinic acid production in plant. African J Biotechnol 7:4959–4965

    CAS  Google Scholar 

  • Rady MR, Nazif NM (2005) Rosmarinic acid content and RAPD analysis of in vitro regenerated basil (Ocimum americanum) plants. Fitoterapia 76(6):525–533. https://doi.org/10.1016/j.fitote.2005.04.001

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, Palazon J (2016) Elicitation an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21:182–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Riedel H, Akumo DN, Thaw NMM, Kutuk O, Neubauer P, Smetanska I (2012) Elicitation and precursor feeding influence phenolic acids composition in Vitis vinifera suspension culture. Afr J Biotechnol 11(12):3000–3008

    CAS  Google Scholar 

  • Sahraroo A, Mirjalili MH, Corchete P, Babalar M, Fattahi-Moghadam MR (2016) Establishment and characterization of a Satureja khuzistanica Jamzad (Lamiaceae) cell suspension culture: a new in vitro source of rosmarinic acid. Cytotechnology 68:1415–1424

    Article  CAS  PubMed  Google Scholar 

  • Simon JE, Morales MR, Phippen WB, Vieira RF, Hao Z (1999) Basil: a source of aroma compounds and a popular culinary and ornamental herb. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, pp 499–505

    Google Scholar 

  • Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T (2005) Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res 579:200–213. https://doi.org/10.1016/j.mrfmmm.2005.03.023

    Article  CAS  PubMed  Google Scholar 

  • Sridhar A, Ponnuchamy M, Kumar PS (2021) Techniques and modeling of polyphenol extraction from food: a review. Environ Chem Lett 19:3409–3443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strazzer P, Guzzo F, Levi M (2011) Correlated accumulation of anthocyanins and rosmarinic acid in mechanically stressed red cell suspensions of basil (Ocimum basilicum). J Plant Physiol 168(3):288–293. https://doi.org/10.1016/j.jplph.2010.07.020

    Article  CAS  PubMed  Google Scholar 

  • Tada H, Murakami Y, Omoto T, Shimomura K, Ishimaru K (1996) Rosmarinic acid and related phenolics in hairy root cultures of Ocimum basilicum. Phytochemistry 42(2):431–434. https://doi.org/10.1016/0031-9422(96)00005-2

    Article  CAS  Google Scholar 

  • Vasconsuelo A, Boland R (2007) Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci 172:861–875

    Article  CAS  Google Scholar 

  • Verma P, Khan SA, Mathur AK, Shanker K, Kalra A (2014) Fungal endophytes enhanced the growth and production kinetics of Vinca minor hairy roots and cell suspensions grown in bioreactor. Plant Cell Tissue Organ Cult 118:257–268. https://doi.org/10.1007/11240-014-0478-4

    Article  CAS  Google Scholar 

  • Vilkhu K, Mawson R, Simons L, Bates D (2008) Applications and opportunities for ultrasound assisted extraction in the food industry: a review. Innov Food Sci Emerg Technol 9:161–169

    Article  CAS  Google Scholar 

  • Vyas P, Mukhopadhyay K (2018) Elicitation of phenylpropanoids and expression analysis of PAL gene in suspension cell culture of Ocimum tenuiflorum L. Proc Natl Acad Sci India Sect B Biol Sci 88(3):1207–1217

    Article  CAS  Google Scholar 

  • Wiktorowska E, Dlugosz M, Janiszowska W (2010) Significant enhancement of oleanolic acid accumulation by biotic elicitors in cell suspension cultures of Calendula officinalis L. Enzyme Microb Technol 46:14–20

    Article  CAS  Google Scholar 

  • Xu W, Jin X, Yang M, Xue S, Luo L, Cao X, Zhang C, Qiao S, Zhang C, Li J, Wu J, Lv L, Zhao F, Wang N, Tan S, Bu AGAL, Wang C, Wang X (2021) Primary and secondary metabolites produced in Salvia miltiorrhiza hairy roots by an endophytic fungal elicitor from Mucor fragilis. Plant Physiol Biochem 160:404–412

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Shi M, Ng J, Wu JY (2006) Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Sci 170(4):853–858. https://doi.org/10.1016/j.plantsci.2005.12.004

    Article  CAS  Google Scholar 

  • Zhang S, Yan Y, Wang B, Liang Z, Liu Y, Liu F, Qi Z (2014) Selective responses of enzymes in the two parallel pathways of rosmarinic acid biosynthetic pathway to elicitors in Salvia miltiorrhiza hairy root culture. J Biosci Bioeng 117:645–651. https://doi.org/10.1016/j.jbiosc.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signals transduction leading to production of secondary metabolites. Biotechnol Adv 23(4):283–333. https://doi.org/10.1016/j.biotechadv.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  • Zucker M (1965) Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue. Plant Physiol 40:779–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, CSIR- Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow for providing research facilities to execute this work. In this investigation, first author (MK) thankful to the Indian Council of Medical Research (ICMR) for the award of Senior Research Fellowship (No. 3/1/3/JRF-2012/HRD) and AP is thankful to University Grant Commission (UGC), New Delhi (No.F.4-2/2006 (BSR)/BL/18-19/0078) financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Mathur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 55 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, M., Prasad, A., Mathur, A. et al. Precursors and elicitor induced enhancement of cell biomass and phenolic compounds in cell suspensions of Indian basil-Ocimum basilicum (CIM-Saumya). Physiol Mol Biol Plants 29, 679–693 (2023). https://doi.org/10.1007/s12298-023-01316-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-023-01316-6

Keywords

Navigation