Skip to main content

Advertisement

Log in

Know when and how to die: gaining insights into the molecular regulation of leaf senescence

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Senescence is the ultimate phase in the life cycle of leaves which is crucial for recycling of nutrients to maintain plant fitness and reproductive success. The earliest visible manifestation of leaf senescence is their yellowing, which usually commences with the breakdown of chlorophyll. The degradation process involves a gradual and highly coordinated disassembly of macromolecules resulting in the accumulation of nutrients, which are subsequently mobilized from the senescing leaves to the developing organs. Leaf senescence progresses under overly tight genetic and molecular control involving a well-orchestrated and intricate network of regulators that coordinate spatio-temporally with the influence of both internal and external cues. Owing to the advancements in omics technologies, the availability of mutant resources, scalability of molecular analyses methodologies and the advanced capacity to integrate multidimensional data, our understanding of the genetic and molecular basis of leaf ageing has greatly expanded. The review provides a compilation of the multitier regulation of senescence process and the interrelation between the environment and the terminal phase of leaf development. The knowledge gained would benefit in devising the strategies for manipulation of leaf senescence process to improve crop quality and productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albacete AA, Martínez-Andújar C, Pérez-Alfocea F (2014) Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnol Adv 32:12–30

    Article  CAS  PubMed  Google Scholar 

  • Ay N, Irmler K, Fischer A et al (2009) Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. Plant J 58(2):333–346

    Article  CAS  PubMed  Google Scholar 

  • Balazadeh S, Riaño-Pachón DM, Mueller-Roeber B (2008) Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol 10:63–75

    Article  PubMed  Google Scholar 

  • Balazadeh S, Siddiqui H, Allu AD et al (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62(2):250–264

    Article  CAS  PubMed  Google Scholar 

  • Barros JAS, Cavalcanti JHF, Pimentel KG et al (2022) The significance of WRKY45 transcription factor in metabolic adjustments during dark-induced leaf senescence. Plant Cell Environ 45(9):2682–2695

    Article  CAS  PubMed  Google Scholar 

  • Bazargani MM, Sarhadi E, Bushehri AAS et al (2011) A proteomics view on the role of drought-induced senescence and oxidative stress defense in enhanced stem reserves remobilization in wheat. J Proteom 74(10):1959–1973

    Article  CAS  Google Scholar 

  • Breeze E, Harrison E, McHattie S et al (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23(3):873–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broda M, Khan K, O’Leary B et al (2021) Increased expression of ANAC017 primes for accelerated senescence. Plant Physiol 186:2205–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brusslan JA, Alvarez-Canterbury AM, Nair NU et al (2012) Genome-wide evaluation of histone methylation changes associated with leaf senescence in Arabidopsis. PLoS One 7(3):e33151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brychkova G, Alikulov Z, Fluhr R et al (2008) A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in the Atxdh1 Arabidopsis mutant. Plant J 54(3):496–509

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E et al (2003) The molecular analysis of leaf senescence–a genomics approach. Plant Biotechnol J 1:3–22

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-wollaston V, Page T, Harrison E et al (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  CAS  PubMed  Google Scholar 

  • Caselles V, Casadesús A, Munné-Bosch S (2021) A dual role for abscisic acid integrating the cold stress response at the whole-plant level in Iris pseudacorus L. growing in a natural Wetland. Front Plant Sci 12:2738

    Article  Google Scholar 

  • Chen MK, Lee PF, Yang CH (2011) Delay of flower senescence and abscission in arabidopsis transformed with an FOREVER YOUNG FLOWER homolog from oncidium orchid. Plant Signal Behav 6(11):1841–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen GH, Chan YL, Liu CP et al (2012) Ethylene response pathway is essential for Arabidopsis A-FIFTEEN function in floral induction and leaf senescence. Plant Signal Behav 7(4):457–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LJ, Wuriyanghan H, Zhang YQ et al (2013) An S-domain receptor-like kinase, OsSIK2, confers abiotic stress tolerance and delays dark-induced leaf senescence in rice. Plant Physiol 163(4):1752–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Maodzeka A, Zhou L et al (2014) Removal of DELLA repression promotes leaf senescence in Arabidopsis. Plant Sci 219–220:26–34

    Article  PubMed  Google Scholar 

  • Chen D, Wang S, Xiong B et al (2015) Carbon/nitrogen imbalance associated with drought-induced leaf senescence in sorghum bicolor. PLoS One 10:e0137026

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Lu L, Mayer KS et al (2016) POWERDRESS interacts with HISTONE DEACETYLASE 9 to positive aging in Arabidopsis. eLife 5:e17214

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Xiang S, Chen Y et al (2017) Arabidopsis WRKY45 interacts with the DELLA protein RGL1 to positively regulate age-triggered leaf senescence. Mol Plant 10(9):1174–1189

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Wu C, He L et al (2018) Knocking out the gene RLS1 induces hypersensitivity to oxidative stress and premature leaf senescence in rice. Int J Mol Sci 19:1–16

    Google Scholar 

  • Danisman S, van der Wal F, Dhondt S et al (2012) Arabidopsis class i and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol 159(4):1511–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong S, Sang L, Xie H et al (2021) Comparative transcriptome analysis of salt stress-induced leaf senescence in Medicago truncatula. Front Plant Sci 12:1378

    Article  Google Scholar 

  • Dubousset L et al (2009) Remobilization of leaf S compounds and senescence in response to restricted sulphate supply during the vegetative stage of oilseed rape are affected by mineral N availability. J Exp Bot 60:3239–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis CM, Nagpal P, Young JC et al (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132(20):4563–4574

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Lou Y, Shi H et al (2019) Transcriptomic analysis of dark-induced senescence in bermudagrass (Cynodon dactylon). Plants 8:614

    Article  CAS  PubMed Central  Google Scholar 

  • Fanata WI, Lee KH, Son BH et al (2013) N-glycan maturation is crucial for cytokinin-mediated development and cellulose synthesis in Oryza sativa. Plant J Cell Mol Biol 73(6):966–979

    Article  CAS  Google Scholar 

  • Fedyaeva AV, Stepanov AV, Lyubushkina IV et al (2014) Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells. Biochem 79:1202–1210

    CAS  Google Scholar 

  • Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science (New York, N.Y.) 330(6004):622–627

    Article  CAS  Google Scholar 

  • Gao S, Gao J, Zhu X et al (2016) ABF2, ABF3, and ABF4 positive ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis. Mol Plant 9(9):1272–1285

    Article  CAS  PubMed  Google Scholar 

  • Garapati P, Xue GP, Munné-Bosch S et al (2015) Transcription factor ATAF1 in arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades. Plant Physiol 168:1122–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gepstein S, Sabehi G, Carp M-J et al (2003) Large-scale identification of leaf senescence-associated genes. Plant J Cell Mol Biol 36(5):629–642

    Article  CAS  Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-. Plant Cell 17(12):3436–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Gan S (2011) AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis. Plant Physiol 156(3):1612–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Nazim H, Liang Z et al (2016) Magnesium deficiency in plants: an urgent problem. Crop J 4:83–91

    Article  Google Scholar 

  • Guo P, Li Z, Huang P et al (2017) A tripartite ampli fi cation loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. Plant Cell 29(November):2854–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Ren G, Zhang K et al (2021) Leaf senescence: progression, regulation, and application. Mol Horticult 1(1):1–25

    Google Scholar 

  • Hao C, Yang Y, Du J et al (2022) The PCY-SAG14 phytocyanin module regulated by PIFs and miR408 promotes dark-induced leaf senescence in Arabidopsis. Proc Natl Acad Sci U S A 119:1–10

    Article  Google Scholar 

  • He Y, Fukushige H, Hildebrand DF et al (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128(3):876–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Wu W, Zinta G et al (2018) A naturally occurring epiallele associates with leaf senescence and local climate adaptation in Arabidopsis accessions. Nat Commun 9(1):1–11

    Google Scholar 

  • He Y, Zhang X, Shi Y, Xu X, Li L, Wu JL (2021) PREMATURE SENESCENCE LEAF 50 promotes heat stress tolerance in rice (Oryza sativa L.). Rice 14(1):1–7

    CAS  Google Scholar 

  • Hensel LL, Grbić V, Baumgarten DA et al (1993) Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5(5):553–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hinckley WE, Keymanesh K, Cordova JA et al (2019) The HAC1 histone acetyltransferase promotes leaf senescence and regulates the expression of ERF022. Plant Direct 3(8):e00159

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu CY, Chou ML, Wei WC et al (2022) Chloroplast protein Tic55 involved in dark-induced senescence through AtbHLH/AtWRKY-ANAC003 controlling pathway of Arabidopsis thaliana. Genes 13(2):1–23

    Article  Google Scholar 

  • Huang J, Cai M, Long Q et al (2014) OsLOX2, a rice type I lipoxygenase, confers opposite effects on seed germination and longevity. Transgen Res 23(4):643–655

    Article  CAS  Google Scholar 

  • Huang D, Lan W, Li D et al (2018) WHIRLY1 occupancy affects histone lysine modification and WRKY53 transcription in Arabidopsis developmental manner. Front Plant Sci 871:1503

    Article  Google Scholar 

  • Huang D, Lan W, Ma W et al (2022) WHIRLY1 recruits the histone deacetylase HDA15 repressing leaf senescence and flowering in Arabidopsis. J Integr Plant Biol 64:1411–1429

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa M, Nakai Y, Arima K et al (2015) A VAMP-associated protein, PVA31 is involved in leaf senescence in Arabidopsis. Plant Signal Behav 10(3):e990847

    Article  PubMed  PubMed Central  Google Scholar 

  • Jajic I, Sarna T, Strzalka K (2015) Senescence, stress, and reactive oxygen species. Plants 4:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaradat MR, Feurtado JA, Huang D et al (2013) Multiple roles of the transcription factor AtMYBR1/AtMYB44 in ABA signaling, stress responses, and leaf senescence. BMC Plant Biol 13(1):1–19

    Article  Google Scholar 

  • Jiang Y, Liang G, Yang S et al (2014) Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell 26:230–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing S, Zhou X, Song Y et al (2009) Heterologous expression of OsWRKY23 gene enhances pathogen defense and dark-induced leaf senescence in Arabidopsis. Plant Growth Regul 58(2):181–190

    Article  CAS  Google Scholar 

  • Kamranfar I, Xue GP, Tohge T et al (2018) Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence. New Phytol 218(4):1543–1557

    Article  CAS  PubMed  Google Scholar 

  • Kan C, Zhang Y, Wang HL et al (2021) Transcription factor NAC075 delays leaf senescence by deterring reactive oxygen species accumulation in Arabidopsis. Front Plant Sci 12(February):1–11

    Google Scholar 

  • Kim HJ, Ryu H, Hong SH et al (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci USA 103(3):814–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Ohr H, Lee JW et al (2008) Temporal and spatial downregulation of Arabidopsis MET1 activity results in global DNA hypomethylation and developmental defects. Mol Cells 26(6):611–615

    CAS  PubMed  Google Scholar 

  • Kim JH, Woo HR, Kim J et al (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323(5917):1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Sakuraba Y, Han SH et al (2013) Mutation of the Arabidopsis NAC016 transcription factor Negatives leaf senescence. Plant Cell Physiol 54(10):1660–1672

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Woo HRR, Nam HGG (2016) Toward systems understanding of leaf senescence: an integrated multi-omics perspective on leaf senescence research. Mol Plant 9(6):813–825

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kim HJ, Vu QT et al (2018) Circadian control of ORE1 by PRR9 positively regulates leaf senescence in Arabidopsis. Proc Natl Acad Sci USA 115(33):8448–8453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T, Kang K, Kim SH et al (2019) OsWRKY5 promotes rice leaf senescence via senescence-associated NAC and abscisic acid biosynthesis pathway. Int J Mol Sci 20(18):4437

    Article  CAS  PubMed Central  Google Scholar 

  • Kim I, Kim E-H, Choi Y et al (2022) Fibrillin2 in chloroplast plastoglobules participates in photoprotection and jasmonate-induced senescence. Plant Physiol 189:1363–1379

    Article  PubMed  Google Scholar 

  • Kocourková D, Kroumanová K, Podmanická T et al (2021) Phospholipase Dα1 acts as a negative regulator of high Mg2+-induced leaf senescence in Arabidopsis. Front Plant Sci 12:2645

    Article  Google Scholar 

  • Koyama T, Nii H, Mitsuda N et al (2013) A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence. Plant Physiol 162(2):991–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • la Haba PD, la Mata LD, Molina E et al (2014) High temperature promotes early senescence in primary leaves of sunflower (Helianthus annuus L.) plants. Can J Plant Sci 94(4):659–669

    Article  Google Scholar 

  • Law JA, Jacobsen SE (2011) Establising, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11(3):204–220

    Article  Google Scholar 

  • Lee S, Seo PJ, Lee HJ et al (2012) A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant J 70(5):831–844

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Sakuraba Y, Lee T et al (2015) Mutation of Oryza sativa CORONATINE INSENSITIVE 1b (OsCOI1b) delays leaf senescence. J Integr Plant Biol 57(6):563–576

    Article  Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90(5):929–938

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Peng J, Wen X et al (2013) ETHYLENE-INSENSITIVE3 Is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25(9):3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Kubiszewski-Jakubiak S, Radomiljac J et al (2016) Characterization of a novel β-barrel protein (AtOM47) from the mitochondrial outer membrane of Arabidopsis thaliana. J Exp Bot 67(21):6061–6075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Kim JH, Kim J et al (2020) ATM suppresses leaf senescence triggered by DNA double-strand break through epigenetic control of senescence-associated genes in Arabidopsis. New Phytol 227(2):473–484

    Article  CAS  PubMed  Google Scholar 

  • Li N, Bo C, Zhang Y et al (2021a) PHYTOCHROME INTERACTING FACTORS PIF4 and PIF5 promote heat stress induced leaf senescence in Arabidopsis. J Exp Bot 72:4577–4589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Liao S, Mei P et al (2021b) OsWRKY93 dually functions between leaf senescence and in response to biotic stress in rice. Front Plant Sci 12:327

    Google Scholar 

  • Liang C, Wang Y, Zhu Y et al (2014) OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci 111(27):10013–10018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim PO, Woo HR, Nam HG (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci 8:272–278

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Kim Y, Breeze E et al (2007a) Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants. Plant J 52(6):1140–1153

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007b) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Lee IC, Kim J et al (2010) Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J Exp Bot 61(5):1419–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JF, Wu SH (2004) Molecular events in senescing Arabidopsis leaves. Plant J Cell Mol Biol 39(4):612–628

    Article  CAS  Google Scholar 

  • Lin M, Pang C, Fan S et al (2015) Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-Seq. BMC Plant Biol 15:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu F, Guo F-Q (2013) Nitric oxide deficiency accelerates chlorophyll breakdown and stability loss of thylakoid membranes during dark-induced leaf senescence in Arabidopsis. PLoS One 8:e56345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Shen J, Xu Y et al (2016) Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice. J Exp Bot 67(19):5785–5798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Zhang S, Zhou B et al (2019) The histone H3K4 demethylase JMJ16 represses leaf. Plant Cell 31:430–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohman KN, Gan S, John MC et al (1994) Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant 92(2):322–328

    Article  CAS  Google Scholar 

  • Luan WJ, Shen A, Jin ZP et al (2013) Knockdown of OsHox33, a member of the class III homeodomain-leucine zipper gene family, accelerates leaf senescence in rice. Sci China Life Sci 56(12):1113–1123

    Article  CAS  PubMed  Google Scholar 

  • Mao C, Lu S, Lv B et al (2017) A rice nac transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol 174:1747–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masclaux-Daubresse C, Purdy S, Lemaitre T et al (2007) Genetic variation suggests interaction between cold acclimation and metabolic regulation of leaf senescence. Plant Physiol 143(1):434–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka D, Yasufuku T, Furuya T et al (2015) An abscisic acid inducible Arabidopsis MAPKKK, MAPKKK18 regulates leaf senescence via its kinase activity. Plant Mol Biol 87(6):565–575

    Article  CAS  PubMed  Google Scholar 

  • Miryeganeh M (2022) Epigenetic mechanisms of senescence in plants. Cells 11(2):251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishina TE, Lamb C, Zeier J (2007) Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant Cell Environ 30(1):39–52

    Article  CAS  PubMed  Google Scholar 

  • Moritoh S, Eun CH, Ono A et al (2012) Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation. Plant J 71(1):85–98

    Article  CAS  PubMed  Google Scholar 

  • Morris K, MacKerness SA, Page T et al (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J Cell Mol Biol 23(5):677–685

    Article  CAS  Google Scholar 

  • Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109(10):4553–4567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munné-Bosch S, Alegre L (2002) Plant aging increases oxidative stress in chloroplasts. Planta 214:608–615

    Article  PubMed  Google Scholar 

  • Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress Sergi. Funct Plant Biol 31:203–216

    Article  PubMed  Google Scholar 

  • Nagahage ISP, Sakamoto S, Nagano M et al (2020) An Arabidopsis NAC domain transcription factor, ATAF2, promotes age-dependent and dark-induced leaf senescence. Physiol Plant 170(2):299–308

    Article  CAS  PubMed  Google Scholar 

  • Nakabayashi K, Ito M, Kiyosue T et al (1999) Identification of clp genes expressed in senescing Arabidopsis leaves. Plant Cell Physiol 40(5):504–514

    Article  CAS  PubMed  Google Scholar 

  • Navabpour S, Morris K, Allen R et al (2003) Expression of senescence-enhanced genes in response to oxidative stress. J Exp Bot 54:2285–2292

    Article  CAS  PubMed  Google Scholar 

  • Nie G, Yang Z, He J et al (2021) Genome-wide investigation of the NAC transcription factor family in miscanthus sinensis and expression analysis under various abiotic stress. Front Plant Sci 12:2464

    Article  Google Scholar 

  • Oda-Yamamizo C, Mitsuda N, Sakamoto S et al (2016) The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. Sci Rep 6(January):1–13

    Google Scholar 

  • Ogneva ZV, Dubrovina AS, Kiselev KV (2016) Age-associated alterations in DNA methylation and expression of methyltransferase and demethylase genes in Arabidopsis thaliana. Biol Plant 60(4):628–634

    Article  CAS  Google Scholar 

  • Panchuk II, Zentgraf U, Volkov RA (2005) Expression of the Apx gene family during leaf senescence of Arabidopsis thaliana. Planta 222(5):926–932

    Article  CAS  PubMed  Google Scholar 

  • Panigrahy M, Singh A, Das S et al (2021) Co-action of ABA, brassinosteriod hormone pathways and differential regulation of different transcript isoforms during cold-and-dark induced senescence in Arabidopsis. J Plant Biochem Biotechnol 31(3):489–510

    Article  Google Scholar 

  • Park SJ, Park S, Kim Y et al (2022) Ethylene responsive factor34 mediates stress-induced leaf senescence by regulating salt stress-responsive genes. Plant Cell Environ 45(6):1719–1733

    Article  CAS  PubMed  Google Scholar 

  • Parveen S, Ranjan RK, Anand A et al (2018) Combined deficiency of nitrogen and iron increases senescence induced remobilization of plant immobile iron in wheat. Acta Physiol Plant 40:1–12

    Article  CAS  Google Scholar 

  • Patel S, Kumar DSP (2008) Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 4(1):20–27

    Article  CAS  PubMed  Google Scholar 

  • Pham G, Shin DM, Kim Y et al (2022) Ran-GTP/-GDP-dependent nuclear accumulation of nonexpressor of pathogenesis-related genes1 and tgacg-binding factor2 controls salicylic acid-induced leaf senescence. Plant Physiol 189(3):1774–1793

    Article  PubMed  Google Scholar 

  • Piao W, Kim SH, Lee BD et al (2019) Rice transcription factor OsMYB102 delays leaf senescence by down-regulating abscisic acid accumulation and signaling. J Exp Bot 70(10):2699–2715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruzinska A, Tanner G, Aubry S et al (2005) Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction 1. Plant Physiol 139:52–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi T, Wang J, Huang H et al (2015) Regulation of Jasmonate-induced leaf senescence by antagonism between bHLH subgroup IIIe and IIId factors in arabidopsis. Plant Cell 27(June):1634–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao H, Liu Y, Cheng L et al (2021) TaWRKY13-A serves as a mediator of jasmonic acid-related leaf senescence by modulating Jasmonic acid biosynthesis. Front Plant Sci 12:717233

    Article  PubMed  PubMed Central  Google Scholar 

  • Raines T, Shanks C, Cheng CY et al (2016) The cytokinin response factors modulate root and shoot growth and Positive leaf senescence in Arabidopsis. Plant J Cell Mol Biol 85(1):134–147

    Article  CAS  Google Scholar 

  • Rapp YG, Ransbotyn V, Grafi G (2015) Senescence meets dedifferentiation. Plants (Basel, Switzerland) 4(3):356–368

    CAS  Google Scholar 

  • Rauf M, Arif M, Dortay H et al (2013) ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. EMBO Rep 14(4):382–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raxwal V, Katiyar-Agarwal S, Agarwal M (2012) Structural and functional diversity of plant heat shock factors. In Plant Stress ©2012 Global Science Books, pp 89–96.

  • Reguera M, Peleg Z, Abdel-Tawab YM et al (2013) Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiol 163(4):1609–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Li M, Wang W et al (2022) MicroRNA840 (MIR840) accelerates leaf senescence by targeting the overlapping 3′UTRs of PPR and WHIRLY3 in Arabidopsis thaliana. Plant J 109(1):126–143

    Article  CAS  PubMed  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A et al (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104(49):19631–19636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robatzek S, Somssich IE (2001) A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J Cell Mol Biol 28(2):123–133

    Article  CAS  Google Scholar 

  • Sakuraba Y, Jeong J, Kang M-Y et al (2014a) Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nat Commun 5:4636

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Kim D, Kim YS et al (2014b) Arabidopsis STAYGREEN-LIKE (SGRL) positives abiotic stress-induced leaf yellowing during vegetative growth. FEBS Lett 588(21):3830–3837

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Kim YS, Han SH et al (2015a) The arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed-forward regulatory loop involving NAP. Plant Cell 27(6):1771–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuraba Y, Piao W, Lim JH et al (2015b) Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant Cell Physiol 56(12):2325–2339

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Kim D, Han SH et al (2020) Multilayered regulation of membrane-bound ONAC054 is essential for abscisic acid-induced leaf senescence in rice. Plant Cell 32(3):630–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasi JM, Kumar CV, Mani B et al (2019) Identification and characterization of miRNAs during flag leaf senescence in rice by high-throughput sequencing. Plant Physiol Reports 24(1):1–14

    Article  Google Scholar 

  • Sato Y, Morita R, Katsuma S et al (2009) Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J 57(1):120–131

    Article  CAS  PubMed  Google Scholar 

  • Schippers JHM, Schmidt R, Wagstaff C et al (2015) Living to die and dying to live: the survival strategy behind leaf senescence. Plant Physiol 169:914–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schommer C, Palatnik JF, Aggarwal P et al (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6(9):e230

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulte G, Begum N, Worku M et al (2007) Leaf senescence induced by nitrogen deficiency as indicator of genotypic differences in nitrogen efficiency in tropical maize. J Plant Nutr Soil Sci 170(1):106–114

    Article  Google Scholar 

  • Sharabi-Schwager M, Lers A, Samach A et al (2010) Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. J Exp Bot 61(1):261–273

    Article  CAS  PubMed  Google Scholar 

  • Smykowski A, Zimmermann P, Zentgraf U (2010) G-Box Binding Factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis. Plant Physiol 153(3):1321–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobieszczuk-Nowicka E (2017) Polyamine catabolism adds fuel to leaf senescence. Amino Acids 49(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Sobieszczuk-Nowicka E, Wrzesiński T, Bagniewska-Zadworna A et al (2018) Physio-genetic dissection of dark-induced leaf senescence and timing its reversal in Barley1. Plant Physiol 178:654–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Springer A, Kang C, Rustgi S et al (2016) Programmed chloroplast destruction during leaf senescence involves 13-lipoxygenase (13-LOX). Proc Natl Acad Sci USA 113(12):3383–3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytol 197(3):696–711

    Article  PubMed  Google Scholar 

  • Thompson AR, Doelling JH, Suttangkakul A et al (2005) Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138(4):2097–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trejo-Arellano MS, Mehdi S, de Jonge J, Dvorák Tomastíková E, Köhler C, Hennig L (2020) Dark-Induced Senescence Causes Localized Changes in DNA Methylation. Plant Physiol 182(2):949–961

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Kusaba M (2015) Strigolactone regulates leaf senescence in concert with ethylene in Arabidopsis. Plant Physiol 169(1):138–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Graaff E, Schwacke R, Schneider A et al (2006) Transcription analysis of arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141(2):776–792

    Article  PubMed  PubMed Central  Google Scholar 

  • Veliz CG, Criado MV, Galotta MF et al (2020) Regulation of senescence-associated protease genes by sulphur availability according to barley (Hordeum vulgare L.) phenological stage. Ann Bot 126:435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogelmann K, Drechsel G, Bergler J et al (2012) Early senescence and cell death in arabidopsis saul1 mutants involves the PAD4-dependent salicylic acid pathway. Plant Physiol 159(4):1477–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KL-C, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14(suppl 1):S131–S151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SH, Lim JH, Kim SS et al (2015) Mutation of SPOTTED LEAF3 (SPL3) impairs abscisic acid-responsive signalling and delays leaf senescence in rice. J Exp Bot 66(22):7045–7059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Qian C, Guo X et al (2016) ELS1, a novel MATE transporter related to leaf senescence and iron homeostasis in Arabidopsis thaliana. Biochem Biophys Res Commun 476(4):319–325

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Chang X, Lin J et al (2018) Transcriptome profiling reveals regulatory mechanisms underlying corolla senescence in petunia. Hortic Res 5:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Weaver LM, Amasino RM (2001) Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants. Plant Physiol 127(3):876–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei T, Ou B, Li J et al (2013) Transcriptional profiling of rice early response to Magnaporthe oryzae identified OsWRKYs as important regulators in rice blast resistance. PLoS One 8(3):e59720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Q, Yan Z, Xiong Y, Fang Z (2021) Altered expression of OsAAP3 influences rice lesion mimic and leaf senescence by regulating arginine transport and nitric oxide pathway. Int J Mol Sci 22(4):2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei YQ, Yuan JJ, Xiao CC et al (2022) RING-box proteins regulate leaf senescence and stomatal closure via repression of ABA transporter gene ABCG40. J Integrat Plant Biol 64:979–994

    Article  CAS  Google Scholar 

  • Windram O, Madhou P, Mchattie S et al (2012) Arabidopsis defense against botrytis Cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. Plant Cell 24(9):3530–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo HR, Kim JH, Nam HG et al (2004) The delayed leaf senescence mutants of Arabidopsis, ore1, ore3, and ore9 are tolerant to oxidative stress. Plant Cell Physiol 45(7):923–932

    Article  CAS  PubMed  Google Scholar 

  • Woo HR, Kim JH, Kim J et al (2010) The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. J Exp Bot 61(14):3947–3957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo HR, Kim HJ, Lim PO et al (2019) Leaf senescence: systems and dynamics aspects. Annu Rev Plant Biol 70:347–376

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Zhang L, Zhou C et al (2008) HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59(2):225–234

    Article  CAS  PubMed  Google Scholar 

  • Wu A, Allu AD, Garapati P et al (2012) JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. The Plant Cell Online 24(2):482–506

    Article  CAS  Google Scholar 

  • Wu X, Ding D, Shi C et al (2016) microRNA-dependent gene regulatory networks in maize leaf senescence. BMC Plant Biol 73:16

    Google Scholar 

  • Xie Y, Huhn K, Brandt R et al (2014) Revoluta and wrky53 connect early and late leaf development in Arabidopsis. Dev 141:4772–4783

    Article  CAS  Google Scholar 

  • Xu Y, Huang B (2007) Heat-induced leaf senescence and hormonal changes for thermal bentgrass and turf-type bentgrass species differing in heat tolerance. J Am Soc Hortic Sci 132:185–192

    Article  CAS  Google Scholar 

  • Xu F, Meng T, Li P et al (2011) A soybean dual-specificity kinase, GmSARK, and its Arabidopsis homolog, AtSARK, regulate leaf senescence through synergistic actions of auxin and ethylene. Plant Physiol 157(4):2131–2153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Bai H, Liu C et al (2014) Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice. PLoS One 9(12):e114313

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu P, Chen H, Cai W (2020) Transcription factor CDF4 promotes leaf senescence and floral organ abscission by regulating abscisic acid and reactive oxygen species pathways in Arabidopsis. EMBO Rep 21(7):1–20

    Article  Google Scholar 

  • Yamatani H, Sato Y, Masuda Y et al (2013) NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll - protein complexes during leaf senescence. Plant J Cell Mol Biol 74(4):652–662

    Article  CAS  Google Scholar 

  • Yamatani H, Kohzuma K, Nakano M et al (2018) Impairment of Lhca4, a subunit of LHCI, causes high accumulation of chlorophyll and the stay-green phenotype in rice. J Exp Bot 69(5):1027–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Jia J, Yan X et al (2017) Arabidopsis KHZ1 and KHZ2, two novel non-tandem CCCH zinc-finger and K-homolog domain proteins, have redundant roles in the regulation of flowering and senescence. Plant Mol Biol 95(6):549–565

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Worley E, Udvardi M (2014) A NAP-AAO3 regulatory module promotes chlorophyll degradation via aba biosynthesis in arabidopsis leavesw open. Plant Cell 26(12):4862–4874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HF, Lu XY, Chen HB et al (2017) Low temperature-induced leaf senescence and the expression of senescence-related genes in the panicles of Litchi chinensis. Biol Plant 61:315–322

    Article  CAS  Google Scholar 

  • Yoshida S (2003) Molecular regulation of leaf senescence. Curr Opin Plant Biol 6:79–84

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhang Y, Di C et al (2016) JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis. J Exp Bot 67(3):751–762

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Wang D, Cao L et al (2020) Regulation of leaf longevity by DML3-Mediated DNA demethylation. Mol Plant 13(8):1149–1161

    Article  CAS  PubMed  Google Scholar 

  • Zakari SA, Asad MAU, Han Z et al (2020) Relationship of nitrogen deficiency-induced leaf senescence with ROS generation and ABA concentration in rice flag leaves. J Plant Growth Regul 39:1503–1517

    Article  CAS  Google Scholar 

  • Zareen S, Ali A, Lim CJ et al (2022) The transcriptional corepressor HOS15 mediates dark-induced leaf senescence in Arabidopsis. Front Plant Sci 13:828264

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng DD, Yang CC, Qin R et al (2018) A guanine insert in OsBBS1 leads to early leaf senescence and salt stress sensitivity in rice (Oryza sativa L.). Plant Cell Reports 37(6):933–946

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Gan SS (2012) An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol 158(2):961–969

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Xia X, Zhang Y et al (2012) An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis. Plant J 69(4):667–678

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Li C, Wang R et al (2017) The Arabidopsis mitochondrial protease FtSH4 is involved in leaf senescence via regulation of WRKY-dependent salicylic acid accumulation and signaling. Plant Physiol 173(4):2294–2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YM, Guo P, Xia X et al (2021) Multiple layers of regulation on leaf senescence: new advances and perspectives. Front Plant Sci 12:2741

    Article  Google Scholar 

  • Zhang Y, Tan S, Gao Y et al (2022a) CLE42 delays leaf senescence by antagonizing ethylene pathway in Arabidopsis. New Phytol 235(2):550–562

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Liu C, Li K et al (2022b) CLE14 functions as a “brake signal” to suppress age-dependent and stress-induced leaf senescence by promoting JUB1-mediated ROS scavenging in Arabidopsis. Mol Plant 15(1):179–188

    Article  PubMed  Google Scholar 

  • Zhao L, Zhang H, Zhang B et al (2012) Physiological and molecular changes of detached wheat leaves in responding to various treatments. J Integr Plant Biol 54:567–576

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Derkx AP, Liu DC et al (2015) Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Plant Biol 17(4):904–913

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Chan Z, Gao J et al (2016) ABA receptor PYL9 Positives drought resistance and leaf senescence. Proc Natl Acad Sci USA 113(7):1949–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YQ, Zhang ZW, Chen YE et al (2021) Melatonin: a potential agent in delaying leaf senescence. Crit Rev Plant Sci 40(1):1–22

    Article  CAS  Google Scholar 

  • Zhou X, Jiang Y, Yu D (2011) WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Mol Cells 31(4):303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Zhang X, Chen J et al (2022) Overexpression of AHL9 accelerates leaf senescence in Arabidopsis thaliana. BMC Plant Biol 22(1):1–12

    Article  Google Scholar 

  • Zhu X, Chen J, Xie Z et al (2015) Jasmonic acid promotes degreening via MYC2 3 4- and ANAC019 055 072-mediated regulation of major chlorophyll catabolic genes. Plant J 84:597–610

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Li G, Yan C et al (2019) DRL1, encoding a NAC transcription factor, is involved in leaf senescence in grapevine. Int J Mol Sci 20:1–16

    Article  Google Scholar 

Download references

Acknowledgements

Research fundings from PURSE (Promotion of University Research and Scientific Excellence) and CRG (Core Research Grant) grants of Department of Science and Technology (DST), Government of India; DU-IoE (Delhi University-Institute of Eminence, IoE/FRP/LS/2020/27), Delhi, India; UGC (University Grants Commission, 41-512/2021(SR)) and DBT (Department of Biotechnology), Government of India are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surekha Katiyar-Agarwal.

Ethics declarations

Conflict of interest

No competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasi, J.M., Gupta, S., Singh, A. et al. Know when and how to die: gaining insights into the molecular regulation of leaf senescence. Physiol Mol Biol Plants 28, 1515–1534 (2022). https://doi.org/10.1007/s12298-022-01224-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-022-01224-1

Keywords

Navigation