Skip to main content
Log in

A novel SCARECROW-LIKE3 transcription factor LjGRAS36 in Lotus japonicus regulates the development of arbuscular mycorrhizal symbiosis

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The symbiosis with arbuscular mycorrhizal (AM) fungi improves plants’ nutrient uptake. During this process, transcription factors have been highlighted to play crucial roles. Members of the GRAS transcription factor gene family have been reported involved in AM symbiosis, but little is known about SCARECROW-LIKE3 (SCL3) genes belonging to this family in Lotus japonicus. In this study, 67 LjGRAS genes were identified from the L. japonicus genome, seven of which were clustered in the SCL3 group. Three of the seven LjGRAS genes expression levels were upregulated by AM fungal inoculation, and our biochemical results showed that the expression of LjGRAS36 was specifically induced by AM colonization. Functional loss of LjGRAS36 in mutant ljgras36 plants exhibited a significantly reduced mycorrhizal colonization rate and arbuscular size. Transcriptome analysis showed a deficiency of LjGRAS36 led to the dysregulation of the gibberellic acid signal pathway associated with AM symbiosis. Together, this study provides important insights for understanding the important potential function of SCL3 genes in regulating AM symbiotic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bartoli B, Bernardini P, Bi XJ, Bolognino I, Branchini P, Budano A, Melcarne AKC, Camarri P, Cao Z, Cardarelli R, Catalanotti S, Cattaneo C, Chen SZ, Chen TL, Chen Y, Creti P, Cui SW, Dai BZ, Staiti GD, D’Amone A, De Danzengluobu I, Piazzoli BD, Di Girolamo T, Ding XH, Di Sciascio G, Feng CF, Feng ZY, Feng ZY, Galeazzi F, Giroletti E, Gou QB, Guo YQ, He HH, Hu HB, Hu HB, Huang Q, Iacovacci M, Iuppa R, James I, Jia HY, Labaciren, Li HJ, Li JY, Li XX, Liguori G, Liu C, Liu CQ, Liu J, Liu MY, Lu H, Ma LL, Ma XH, Mancarella G, Mari SM, Marsella G, Martello D, Mastroianni S, Montini P, Ning CC, Pagliaro A, Panareo M, Panico B, Perrone L, Pistilli P, Ruggieri F, Salvini P, Santonico R, Sbano SN, Shen PR, Sheng XD, Shi F, Surdo A, Tan YH, Vallania P, Vernetto S, Vigorito C, Wang B, Wang H, Wu CY, Wu HR, Xu B, Xue L, Yang QY, Yang XC, Yao ZG, Yuan AF, Zha M, Zhang HM, Zhang JL, Zhang JL, Zhang L, Zhang P, Zhang XY, Zhang Y, Zhao J, Zhaxiciren XX, Zhu FR, Zhu QQ, Zizzi G, Collaboration (2013) A-Y Observation of TeV gamma rays from the unidentified source HESS J1841-055 with the ARGO-YBJ Experiment. Astrophys J 767: 99

  • Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683–692

    Article  CAS  PubMed  Google Scholar 

  • Cenci A, Rouard M (2017) Evolutionary analyses of GRAS transcription fctors in Angiosperms. Front Plant Sci 8:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Jin W, Liu A, Zhang S, Liu D, Wang F, Lin X, He C (2013) Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci Hort 160:222–229

    Article  CAS  Google Scholar 

  • Choi J, Lee T, Cho J, Servante EK, Pucker B, Summers W, Bowden S, Rahimi M, An K, An G, Bouwmeester HJ, Wallington EJ, Oldroyd G, Paszkowski U (2020) The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice. Nat Commun 11:2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang JY, Blilou I, Scheres B, Benfey PN (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–425

    Article  CAS  PubMed  Google Scholar 

  • Czikkel BE, Maxwell DP (2007) NtGRAS1, a novel stress-induced member of the GRAS family in tobacco, localizes to the nucleus. J Plant Physiol 164:1220–1230

    Article  CAS  PubMed  Google Scholar 

  • El Ghachtouli N, Martin-Tanguy J, Paynot M, Gianinazzi S (1996) First report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatment. FEBS Lett 385:189–192

    Article  PubMed  Google Scholar 

  • Favre P, Bapaume L, Bossolini E, Delorenzi M, Falquet L, Reinhardt D (2014) A novel bioinformatics pipeline to discover genes related to arbuscular mycorrhizal symbiosis based on their evolutionary conservation pattern among higher plants. BMC Plant Biol 14

  • Fiorilli V, Vannini C, Ortolani F, Garcia-Seco D, Chiapello M, Novero M, Domingo G, Terzi V, Morcia C, Bagnaresi P, Moulin L, Bracale M, Bonfante P (2018) Omics approaches revealed how arbuscular mycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat. Sci Rep-UK 8:9625

    Article  Google Scholar 

  • Floss DS, Levy JG, Lévesque-Tremblay V, Pumplin N, Harrison MJ (2013) DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Nat Acad Sci USA 110:E5025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floss DS, Gomez SK, Park HJ, Maclean AM, Müller LM, Bhattarai KK, Lévesque-Tremblay V, Maldonado-Mendoza IE, Harrison MJ (2017) A transcriptional program for arbuscule degeneration during AM symbiosis is regulated by MYB1. Curr Biol 27:1206–1212

    Article  CAS  PubMed  Google Scholar 

  • Foo E, Ross JJ, Jones WT, Reid JB (2013) Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot-London 111:769–779

    Article  CAS  Google Scholar 

  • Gavito ME, Olsson PA, Rouhier H, Medina-Penafiel A, Jakobsen I, Bago A, Azcon-Aguilar C (2005) Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New phytol 168:179–188

    Article  CAS  PubMed  Google Scholar 

  • Glassman SI, Casper BB (2012) Biotic contexts alter metal sequestration and AMF effects on plant growth in soils polluted with heavy metals. Ecology 93:1550–1559

    Article  PubMed  Google Scholar 

  • Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, Hirochika H, Imaizumi-Anraku H, Paszkowski U (2008) Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell 20:2989–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handa Y, Nishide H, Takeda N, Suzuki Y, Kawaguchi M, Saito K (2015) RNA-seq transcriptional profiling of an arbuscular mycorrhiza provides insights into regulated and coordinated gene expression in Lotus japonicus and Rhizophagus irregularis. Plant Cell Physiol 56:1490–1511

    Article  CAS  PubMed  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev of Microbiol 59:19–42

    Article  CAS  Google Scholar 

  • Heck C, Kuhn H, Heidt S, Walter S, Rieger N, Requena N (2016) Symbiotic fungi control plant root cortex development through the novel GRAS transcription factor MIG1. Curr Biol 26:2770–2778

    Article  CAS  PubMed  Google Scholar 

  • Heo JO, Chang KS, Kim IA, Lee MH, Lee SA, Song SK, Lee MM, Lim J (2011) Funneling of gibberellin signaling by the GRAS transcription regulator scarecrow-like 3 in the Arabidopsis root. Proc Nat Acad Sci USA 108:2166–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch S, Kim J, Munoz A, Heckmann AB, Downie JA, Oldroyd GED (2009) GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell 21:545–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho-Plágaro T, Molinero-Rosales N, Fariña Flores D, Villena Díaz M, García-Garrido JM (2019) Identification and expression analysis of GRAS transcription factor genes involved in the control of arbuscular mycorrhizal development in tomato. Front Plant Sci 10:268

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang W, Xian ZQ, Kang X, Tang N, Li ZG (2015) Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. BMC Plant Biol 15:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Itoh H, Ueguchitanaka M, Sato Y, Ashikari M, Matsuoka M (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in Nuclei. Plant Cell 14:57–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenoir I, Fontaine J, Lounes-Hadj Sahraoui A (2016) Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry 123:4–15

    Article  CAS  PubMed  Google Scholar 

  • Liao DH, Chen X, Chen AQ, Wang HM, Liu JJ, Liu JL, Gu M, Sun SB, Xu GH (2015) The characterization of six auxin-induced tomato GH3 Genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis. Plant Cell Physiol 56:674–687

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang W-C, Hooiveld GJEJ, Charnikhova T, Bouwmeester HJ, Bisseling T, Geurts R (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23:3853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XY, Widmer A (2014) Genome-wide comparative analysis of the GRAS gene family in populus, Arabidopsis and rice. Plant Mol Biol Rep 32:1129–1145

    Article  CAS  Google Scholar 

  • Liu F, Xu Y, Jiang H, Jiang C, Du Y, Cheng G, Wang W, Zhu S, Han G, Cheng B (2016) Systematic identification, evolution and expression analysis of the Zea mays PHT1 gene family reveals several new members involved in root colonization by arbuscular mycorrhizal fungi. Int J Mol Sci 17:930

    Article  PubMed Central  Google Scholar 

  • Liu Y, Huang W, Xian Z, Hu N, Lin D, Ren H, Chen J, Su D, Li Z (2017) Overexpression of SlGRAS40 in tomato enhances tolerance to abiotic stresses and influences auxin and gibberellin sgnaling. Front Plant Sci 8:1659

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu F, Xu Y, Han G, Wang W, Li X, Cheng B (2018) Identification and functional characterization of a maize phosphate transporter induced by mycorrhiza formation. Plant Cell Physiol 59:1683–1694

    Article  CAS  PubMed  Google Scholar 

  • Lota F, Wegmüller S, Buer B, Sato S, Bräutigam A, Hanf B, Bucher M (2013) The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus. Plant J 74:280–293

    Article  CAS  PubMed  Google Scholar 

  • Lu JX, Wang T, Xu ZD, Sun LD, Zhang QX (2015) Genome-wide analysis of the GRAS gene family in Prunus mume. Mol Genet Genomics 290:303–317

    Article  CAS  PubMed  Google Scholar 

  • Mayrose M, Ekengren SK, Melech-Bonfil S, Martin GB, Sessa G (2006) A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response. Mol Plant Pathol 7:593–604

    Article  CAS  PubMed  Google Scholar 

  • Medina-Rivera A, Defrance M, Sand O, Herrmann C, Castro-Mondragon JA, Delerce J, Jaeger S, Blanchet C, Vincens P, Caron C, Staines DM, Contreras-Moreira B, Artufel M, Charbonnier-Khamvongsa L, Hernandez C, Thieffry D, Thomas-Chollier M, van Helden J (2015) RSAT 2015: Regulatory sequence analysis tools. Nucleic Acids Res 43:W50–W56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mun T, Bachmann A, Gupta V, Stougaard J, Andersen SU (2016) LotusBase: An integrated information portal for the model legume Lotus japonicus. Sci Rep-UK 6:39447

    Article  CAS  Google Scholar 

  • Nouri E, Surve R, Bapaume L, Stumpe M, Chen M, Zhang Y, Ruyter-Spira C, Bouwmeester H, Glauser G, Bruisson S, Reinhardt D (2021) Phosphate suppression of arbuscular mycorrhizal symbiosis involves gibberellic acid signaling. Plant Cell Physiol 62:959–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HJ, Floss DS, Levesque-Tremblay V, Bravo A, Harrison MJ (2015) Hyphal branching during arbuscule development requires reduced arbuscular mycorrhiza1. Plant Physiol 169:2774–2788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer Monica J, Karl L, Floss Daniela S, Harrison Maria J, Parniske M, Gutjahr C (2016) A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching. Curr Biol 26:987–998

    Article  CAS  PubMed  Google Scholar 

  • Pysh L, Wysockadiller J, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111–119

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo‐Jiménez B, Porcel R, García‐Mina JM, Ruyter‐Spira C, López‐Ráez JAJP, Cell E (2016) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39:441–452

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Calvo-Polanco M, Aroca R (2018) Improvement of salt tolerance in rice plants by arbuscular mycorrhizal Symbiosis. In: Giri B, Prasad R, Varma A (eds) Root Biology. Springer International Publishing, Cham, pp 259–279

    Chapter  Google Scholar 

  • Song XM, Liu TK, Duan WK, Ma QH, Ren J, Wang Z, Li Y, Hou XL (2014) Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapa ssp pekinensis). Genomics 103:135–146

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Chen D, Lu K, Sun Z, Zeng R (2015) Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front Plant Sci 6:786

    Article  PubMed  PubMed Central  Google Scholar 

  • Stuurman J, Jaggi F, Kuhlemeier C (2002) Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. Gene Dev 16:2213–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Xue B, Jones WT, Rikkerink E, Dunker AK, Uversky VN (2011) A functionally required unfoldome from the plant kingdom: intrinsically disordered N-terminal domains of GRAS proteins are involved in molecular recognition during plant development. Plant Mol Biol 77:205–223

    Article  CAS  PubMed  Google Scholar 

  • Takeda N, Handa Y, Tsuzuki S, Kojima M, Sakakibara H, Kawaguchi M (2015a) Gibberellin regulates infection and colonization of host roots by arbuscular mycorrhizal fungi. Plant Signal Behav 10:e1028706

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeda N, Handa Y, Tsuzuki S, Kojima M, Sakakibara H, Kawaguchi M (2015b) Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus. Plant physiol 167:545–557

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian CG, Wan P, Sun SH, Li JY, Chen MS (2004) Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol Biol 54:519–532

    Article  CAS  PubMed  Google Scholar 

  • Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y, Qian Q, Zhu L, Chu C (2009) DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J 58:803–816

    Article  CAS  PubMed  Google Scholar 

  • Verdier J, Torres-Jerez I, Wang M, Andriankaja A, Allen SN, He J, Tang Y, Murray JD, Udvardi MK (2013) Establishment of the Lotus japonicus gene expression atlas (LjGEA) and its use to explore legume seed maturation. Plant J 74:351–362

    Article  CAS  PubMed  Google Scholar 

  • Vos C, Schouteden N, van Tuinen D, Chatagnier O, Elsen A, De Waele D, Panis B, Gianinazzi-Pearson V (2013) Mycorrhiza-induced resistance against the root–knot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Soil Biol Biochem 60:45–54

    Article  CAS  Google Scholar 

  • Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E (2017) Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol plant 10:1147–1158

    Article  CAS  PubMed  Google Scholar 

  • Wang TT, Yu TF, Fu JD, Su HG, Chen J, Zhou YB, Chen M, Guo J, Ma YZ, Wei WL, Xu ZS (2020) Genome-wide analysis of the GRAS gene family and functional identification of GmGRAS37 in drought and salt tolerance. Front Plant Sci 11:604690

    Article  PubMed  PubMed Central  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Xu W, Chen Z, Ahmed N, Han B, Cui Q, Liu A (2016) Genome-wide identification,evolutionary analysis, and stress responses of the GRAS gene family in Castor Beans. Int J Mol Sci 17:1004

    Article  PubMed Central  Google Scholar 

  • Xu Y, Liu F, Han G, Wang W, Zhu S, Li X (2017) Improvement of Lotus japonicus hairy root induction and development of a mycorrhizal symbiosis system. Appl Plant Sci 6:e1141

    Article  Google Scholar 

  • Xue L, Cui HT, Buer B, Vijayakumar V, Delaux PM, Junkermann S, Bucher M (2015) Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. Plant Physiol 167:854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue L, Klinnawee L, Zhou Y, Saridis G, Vijayakumar V, Brands M, Dörmann P, Gigolashvili T, Turck F, Bucher M (2018) AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotus japonicus. Proc Nat Acad Sci USA 115:E9239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Roy A, Zhang Y (2013) Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu N, Luo D, Zhang X, Liu J, Wang W, Jin Y, Dong W, Liu J, Liu H, Yang W, Zeng L, Li Q, He Z, Oldroyd GE, Wang E (2014) A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Res 24:130–133

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZL, Ogawa M, Fleet CM, Zentella R, Hu J, Heo JO, Lim J, Kamiya Y, Yamaguchi S, Sun TP (2011) Scarecrow-like 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proc Nat Acad Sci USA 108:2160–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zentella R, Zhang Z-L, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y (2007) Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19:3037–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31902104).

Author information

Authors and Affiliations

Authors

Contributions

YX, FL, and XL conceived the project. YX, FW, RZ, and FL carried out the experiments. FL and YX performed the bioinformatics analysis. FL and YX wrote the manuscript. XL and JW reviewed the manuscript.

Corresponding authors

Correspondence to Jianping Wu or Xiaoyu Li.

Ethics declarations

Declarations

Not applicable.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1

Heat map representation of three AM-induced GRAS genes belonging to the SCL3 group under different treatment. Data was obtained from Lotus base (https://lotus.au.dk/). The value bar is shown on the right, and red to blue colors represent high to low expression levels.

Figure S3

Gene structure of LjGRAS36 in wild type Lotus japonicus and ljgras36 mutant. (A) Gene structure of LjGRAS36 and position of the LORE1a insertion in ljgras36. Gray arrows indicate the LORE1a transposon. (B) Identification of homozygous ljgras36 through genomic DNA amplification. M represents DNA marker. Gifu represents wild type L. japonicus

Supplementary Material 3

Supplementary Material 4

Figure S2

Conserved amino acids sequence and protein structure of LjGRAS36. (A) Sequence alignment of LjGRAS36, AtSCL3, and SlGRAS18. The identical deduced amino acids were shaded by the red box. Highly conserved regions were indicated by black lines with motif names. (B) The predicted 3D structures of LjGRAS36, AtSCL3, and SlGRAS18 based on template 6kpb.1.A

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Liu, F., Wu, F. et al. A novel SCARECROW-LIKE3 transcription factor LjGRAS36 in Lotus japonicus regulates the development of arbuscular mycorrhizal symbiosis. Physiol Mol Biol Plants 28, 573–583 (2022). https://doi.org/10.1007/s12298-022-01161-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-022-01161-z

Keywords

Navigation