Skip to main content

Plant growth promoting bacteria induce anti-quorum-sensing substances in chickpea legume seedling bioassay

Abstract

Microorganisms and their hosts communicate through an array of signals. Many physiological processes regulated in quorum sensing (QS) are dependent on auto-inducers, like N-acyl-homoserine lactones (AHLs) as in numerous groups of both gram-positive and gram-negative bacteria. In vitro grown seven-day old chickpea seedlings treated with plant growth promoting bacteria (PGPRs) were used to screen the AHL mimicking and for phytochemical substances like phytohormones and secondary metabolites such as phenolics and flavonoids. Potential anti-quorum sensing (anti-QS) activity surrounding the roots on semi-solid agar lawn of Chromobacterium violaceum (ATCC12742) was observed. Crude protein (4.46–8.30 μg/mL) and methanolic extracts (100 μg/mL) of seedling gave moderate anti-QS activity against CV12742 anti QS bioassay, respectively. Crude protein and methanolic extract of Bacillus amyloliquefaciens (34.00 ± 2.23; 34.00 ± 4.33 mm) and B. subtilis A (27.00 ± 2.10; 3.29 ± 2.16 mm) treated samples showed higher zone of inhibition due to anti-QS activity. Phytohormone analysis using LC–MS for zeatin, auxin and methyl jasmonate (MeJA) indicated that phytohormones were significantly upregulated by 1909.80 ng/g FW, 669.67 ng/g FW and 244.55 ng/g FW, respectively in Pseudomonas brassicacearum treated seedlings compared to control. UHPLC of PGPR treated seedlings showed overly expressed gallic acid, protocatechuic acid, catechin, p-hydroxybenzoic acid, caffeic acid, catechol, vanillin, and ferulic acid in B. amyloliquefaciens treated seedlings compared to others. Enrichment analysis identified significant pathways related to metabolism, biosynthesis of secondary metabolites. The present study indicates that chickpea neutralizes an extensive range of functional responses to AHLs that may play important role in legume host-microbe interactions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and frankia bacteria. Plant Signal Behav 7:636–641. https://doi.org/10.4161/psb.20039

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Aloo BN, Makumba BA, Mbega ER (2019) The potential of Bacilli rhizobacteria for sustainable crop production and enviromental sustainability. Microbiol Res 219:26–39. https://doi.org/10.1016/j.micres.2018.10.011

    CAS  Article  PubMed  Google Scholar 

  3. Asfour H (2018) Anti-quorum sensing natural compounds. J Microsc Ultrastruct. https://doi.org/10.4103/jmau.jmau_10_18

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baltenneck J, Reverchon S, Hommais F (2021) Quorum sensing regulation in phytopathogenic bacteria. Microorganisms 9(2):239. https://doi.org/10.3390/microorganisms9020239

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barros J, Dixon RA (2020) Plant phenylalanine/tyrosine ammonia-lyases. Trends Plant Sci 25:66–79. https://doi.org/10.1016/J.TPLANTS.2019.09.011

    CAS  Article  PubMed  Google Scholar 

  6. Bhagyawant SS, Bahadkaria A, Gupta N, Srivastava N (2018a) Impact of phytic acid on nutrient bioaccessibility and antioxidant properties of chickpea genotypes. J Food Biochem. https://doi.org/10.1111/jfbc.12678

    Article  PubMed  Google Scholar 

  7. Bhagyawant SS, Gautam AK, Narvekar DT, Gupta N, Bhadkaria A, Srivastava N, Upadhyaya HD (2018b) Biochemical diversity evaluation in chickpea accessions employing mini-core collection. Physiol Mol Biol Plants 24:1165–1183. https://doi.org/10.1007/s12298-018-0579-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Bhagyawant SS, Narvekar DT, Gupta N, Bhadkaria A, Kirtee KK, Srivastava N (2019) Variations in the antioxidant and free radical scavenging under induced heavy metal stress expressed as proline content in chickpea. Physiol Mol Biol Plants 25:683–696. https://doi.org/10.1007/s12298-019-00667-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Billot R, Plener L, Jacquet P, Elias M, Chabrière E, Daudé D (2020) Engineering acyl-homoserine lactone-interfering enzymes toward bacterial control. J Biol Chem 295:12993–13007. https://doi.org/10.1074/jbc.REV120.013531

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Blake C, Christensen MN, Kovacs AT (2021) Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol Plant Microbe Interact 34:15–25. https://doi.org/10.1094/MPMI-08-20-0225-CR

    CAS  Article  PubMed  Google Scholar 

  11. Boyer M, Bally R, Perrotto S, Chaintreuil C, Wisniewski-Dyé F (2008) A quorum-quenching approach to identify quorum-sensing-regulated functions in Azospirillum lipoferum. Res Microbiol 159:699–708. https://doi.org/10.1016/j.resmic.2008.08.003

    CAS  Article  PubMed  Google Scholar 

  12. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    CAS  Article  PubMed  Google Scholar 

  13. Cao M, Pietras CM, Feng X, Doroschak KJ, Schaffner T, Park J, Zhang H, Cowen LJ, Hescott BJ (2014) New directions for diffusion-based network prediction of protein function: incorporating pathways with confidence. Bioinformatics 30:i219–i227. https://doi.org/10.1093/bioinformatics/btu263

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Carvalhais LC, Dennis PG, Badri DV, Tyson GW, Vivanco JM, Schenk PM (2013) Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS ONE 8:e56457. https://doi.org/10.1371/journal.pone.0056457

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35. https://doi.org/10.1016/j.ejsobi.2008.08.005

    CAS  Article  Google Scholar 

  16. Chen F, Gao Y, Chen X, Yu Z, Li X (2013) Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int J Mol Sci 14:17477–17500. https://doi.org/10.3390/ijms140917477

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Cook DR (1999) Medicago truncatula—a model in the making! Curr Opin Plant Biol 2:301–304. https://doi.org/10.1016/S1369-5266(99)80053-3

    CAS  Article  PubMed  Google Scholar 

  18. Dasgupta D, Ghati A, Sarkar A, Sengupta C, Paul G (2015) Application of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Sesbania bispinosa on the growth of chickpea (Cicer arietinum L.). Int J Curr Microbiol Appl Sci 4:1033–1042

    CAS  Google Scholar 

  19. Deryabin D, Galadzhieva A, Kosyan D, Duskaev G (2019) Plant-derived inhibitors of AHL-mediated quorum sensing in bacteria: modes of action. Int J Mol Sci. https://doi.org/10.3390/ijms20225588

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817. https://doi.org/10.1038/35081101

    CAS  Article  PubMed  Google Scholar 

  21. dos Santos RM, Diaz PAE, Lobo LLB, Rigobelo EC (2020) Use of plant growth-promoting rhizobacteria in maize and sugarcane: characteristics and applications. Front Sustain Food Syst 4:136. https://doi.org/10.3389/fsufs.2020.00136

    Article  Google Scholar 

  22. Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921. https://doi.org/10.1007/s11356-014-3754-2

    Article  Google Scholar 

  23. FAO (2013) Food and Agriculture Organization of the United Nations | Feedipedia. https://www.feedipedia.org/node/16584

  24. Fatima Q, Zahin M, Khan MSA, Ahmad I (2010) Modulation of quorum sensing controlled behaviour of bacteria by growing seedling, seed and seedling extracts of leguminous plants. Indian J Microbiol 50:238–242. https://doi.org/10.1007/s12088-010-0025-x

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ferguson BJ, Mathesius U (2014) Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 40:770–790. https://doi.org/10.1007/s10886-014-0472-7

    CAS  Article  PubMed  Google Scholar 

  26. Fuqua WC, Winans SC (1994) A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J Bacteriol 176:2796–2806. https://doi.org/10.1128/jb.176.10.2796-2806.1994

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275. https://doi.org/10.1128/jb.176.2.269-275.1994

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact 16:827–834. https://doi.org/10.1094/MPMI.2003.16.9.827

    CAS  Article  PubMed  Google Scholar 

  29. Gautam AK, Gupta N, Srivastava N, Bhagyawant SS (2019) Proteomic analysis of chickpea roots revel differential expression of abscisic acid responsive proteins. J Food Biochem 43(7):e12838. https://doi.org/10.1111/jfbc.12838

    CAS  Article  PubMed  Google Scholar 

  30. Ge C, Sheng H, Chen X, Shen X, Sun X, Yan Y, Wang J, Yuan Q (2020) Quorum sensing system used as a tool in metabolic engineering. Biotechnol J 15:1900360. https://doi.org/10.1002/biot.201900360

    CAS  Article  Google Scholar 

  31. Ghosh A, Shah MNA, Jui ZS, Saha S, Fariha KA, Islam T (2018) Evolutionary variation and expression profiling of Isopentenyl transferase gene family in Arabidopsis thaliana L. and Oryza sativa L. Plant Gene 15:15–27. https://doi.org/10.1016/j.plgene.2018.06.002

    CAS  Article  Google Scholar 

  32. Gopalakrishnan S, Srinivas V, Vemula A, Srinivasan S, Abhishek R (2018) Influence of diazotrophic bacteria on nodulation, nitrogen fixation, growth promotion and yield traits in five cultivars of chickpea. Biocatal Agric Biotechnol 15:35–42. https://doi.org/10.1016/j.bcab.2018.05.006

    Article  Google Scholar 

  33. Gorlenko CL, Kiselev HY, Budanova EV, Zamyatnin AA Jr, Ikryannikova LN (2020) Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: new heroes or worse clones of antibiotics? Antibiotics 9:170. https://doi.org/10.3390/antibiotics9040170

    CAS  Article  PubMed Central  Google Scholar 

  34. Gupta G, Parihar S, Ahirwar N, Snehi SK, Vinod S (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 07:96–102. https://doi.org/10.4172/1948-5948.1000188

    CAS  Article  Google Scholar 

  35. Hartmann A, Mudarra M, Andreo B, Marín A, Wagener T, Lange J (2014) Modeling spatiotemporal impacts of hydroclimatic extremes on groundwater recharge at a Mediterranean karst aquifer. Water Resour Res 50:6507–6521. https://doi.org/10.1002/2014WR015685

    Article  Google Scholar 

  36. Huang JJ, Han JI, Zhang LH, Leadbetter JR (2003) Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 69:5941–5949. https://doi.org/10.1128/AEM.69.10.5941-5949.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Husain FM, Al-Shabib NA, Noor S, Khan RA, Khan MS, Ansari FA, Khan MS, Khan A, Ahmad I (2019) Current strategy to target bacterial quorum sensing and virulence by phytocompounds. In: Khan MSA, Ahmad I, Chattopadhyay D (eds) new look to phytomedicine. Elsevier, pp 301–329. https://doi.org/10.1016/B978-0-12-814619-4.00012-4

  38. Jaeck E, Dumas B, Geoffroy P, Favet N, Inzé D, Van Montagu M, Fritig B, Legrand M (1992) Regulation of enzymes involved in lignin biosynthesis: induction of O-methyltransferase mRNAs during the hypersensitive reaction of tobacco to tobacco mosaic virus. Mol Plant Microbe Interact 5:294–300. https://doi.org/10.1094/mpmi-5-294

    CAS  Article  PubMed  Google Scholar 

  39. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 2:224–245. https://doi.org/10.1016/j.biotechadv.2012.10.004

    CAS  Article  Google Scholar 

  40. Khan N, Bano A, Babar MA (2019) Metabolic and physiological changes induced by plant growth regulators and plant growth promoting rhizobacteria and their impact on drought tolerance in Cicer arietinum L. PLoS ONE 14:1–21. https://doi.org/10.1371/journal.pone.0213040

    CAS  Article  Google Scholar 

  41. Khan N, Ali S, Tariq H, Latif S, Yasmin H, Mehmood A, Shahid MA (2020a) Water conservation and plant survival strategies of rhizobacteria under drought stress. Agronomy 10:1683. https://doi.org/10.3390/agronomy10111683

    Article  Google Scholar 

  42. Khan N, Bano A, Ali S, Babar MA (2020b) Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul 90:189–203. https://doi.org/10.1007/s10725-020-00571-x

    CAS  Article  Google Scholar 

  43. Kumari A, Ray K, Sadhna S, Pandey AK, Sreelakshmi Y, Sharma R (2017) Metabolomic homeostasis shifts after callus formation and shoot regeneration in tomato. PLoS ONE. https://doi.org/10.1371/journal.pone.0176978

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kunkel BN, Harper CP (2018) The roles of auxin during interactions between bacterial plant pathogens and their hosts. J Exp Bot 69:245–254. https://doi.org/10.1093/jxb/erx447

    CAS  Article  PubMed  Google Scholar 

  45. Kusada H, Zhang Y, Tamaki H, Kimura N, Kamagata Y (2019) Novel N-Acyl Homoserine lactone-degrading bacteria isolated from Penicillin-contaminated environments and their quorum-quenching activities. Front Microbiol 10:455. https://doi.org/10.3389/fmicb.2019.00455

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kwon YS, Lee DY, Rakwal R, Baek SB, Lee JH, Kwak YS, Seo JS, Chung WS, Bae DW, Kim SG (2016) Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana. Proteomics 16:122–135. https://doi.org/10.1002/pmic.201500196

    CAS  Article  PubMed  Google Scholar 

  47. Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5:359–368. https://doi.org/10.4161/psb.5.4.10871

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Mathesius U (2020) Hormonal interactions in the regulation of the nitrogen-fixing legume-rhizobium symbiosis. Adv Bot Res 94:41–66. https://doi.org/10.1016/bs.abr.2019.09.010

    CAS  Article  Google Scholar 

  49. Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anollés G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449. https://doi.org/10.1073/pnas.262672599

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Matilla MA, Krell T (2018) The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev 42:40–67

    CAS  Article  Google Scholar 

  51. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology. https://doi.org/10.1099/00221287-143-12-3703

    Article  PubMed  Google Scholar 

  52. Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA (2018) The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci 9:112. https://doi.org/10.3389/fpls.2018.00112

    Article  PubMed  PubMed Central  Google Scholar 

  53. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. https://doi.org/10.1146/annurev.micro.55.1.165

    CAS  Article  PubMed  Google Scholar 

  54. Mohd-Radzman NA, Djordjevic MA, Imin N (2013) Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules. Front Plant Sci 4:385. https://doi.org/10.3389/fpls.2013.00385

    Article  PubMed  PubMed Central  Google Scholar 

  55. Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 15:349–357. https://doi.org/10.1016/j.pbi.2012.05.006

    CAS  Article  PubMed  Google Scholar 

  56. Nazzaro F, Fratianni F, Coppola R (2013) Quorum Sensing and Phytochemicals. Int J Mol Sci 14:12607–12619. https://doi.org/10.3390/ijms140612607

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Oliveira BDÁ, Rodrigues AC, Cardoso BMI, Ramos AL, Bertoldi MC, Taylor JG, da Cunha LR, Pinto UM (2016) Antioxidant, antimicrobial and anti-quorum sensing activities of Rubus rosaefolius phenolic extract. Ind Crops Prod 84:59–66. https://doi.org/10.1016/j.indcrop.2016.01.037

    CAS  Article  Google Scholar 

  58. Ortiz-Castro R, López-Bucio J (2019) Review: Phytostimulation and root architectural responses to quorum-sensing signals and related molecules from rhizobacteria. Plant Sci 284:135–142. https://doi.org/10.1016/j.plantsci.2019.04.010

    CAS  Article  PubMed  Google Scholar 

  59. Paluch E, Rewak-Soroczyńska J, Jędrusik I, Mazurkiewicz E, Jermakow K (2020) Prevention of biofilm formation by quorum quenching. Appl Microbiol Biotechnol 104:1871–1881. https://doi.org/10.1007/s00253-020-10349-w

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Pan X, Welti R, Wang X (2010) Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat Protoc 5:986–992. https://doi.org/10.1038/nprot.2010.37

    CAS  Article  PubMed  Google Scholar 

  61. Pathak D, Lone R, Khan S, Koul KK (2019) Isolation, screening and molecular characterization of free-living bacteria of potato (Solanum tuberosum L.) and their interplay impact on growth and production of potato plant under mycorrhizal association. Sci Hortic (amsterdam) 252:388–397. https://doi.org/10.1016/j.scienta.2019.02.072

    Article  Google Scholar 

  62. Qu Q, Zhang Z, Peijnenburg WJGM, Liu W, Lu T, Hu B, Chen J, Chen J, Lin Z, Qian H (2020) Rhizosphere microbiome assembly and its impact on plant growth. J Agric Food Chem 68:5024–5038. https://doi.org/10.1021/acs.jafc.0c00073

    CAS  Article  PubMed  Google Scholar 

  63. Robson Ee H-J, Yin W-F, Chan K-G (2013) Pandoraea sp. RB-44, a novel quorum sensing soil bacterium. Sensors (switzerland) 13:14121–14132. https://doi.org/10.3390/s131014121

    CAS  Article  Google Scholar 

  64. Rosier A, Beauregard PB, Bais HP (2021) Quorum quenching activity of the PGPR Bacillus subtilis UD1022 alters nodulation efficiency of Sinorhizobium meliloti on Medicago truncatula. Front Microbiol 11:3476. https://doi.org/10.3389/fmicb.2020.596299

    Article  Google Scholar 

  65. Ruas FAD, Guerra-Sá R (2020) In silico prediction of protein–protein interaction network induced by manganese II in Meyerozyma guilliermondii. Front Microbiol 11:1–14. https://doi.org/10.3389/fmicb.2020.00236

    Article  Google Scholar 

  66. Saeki EK, Kobayashi RKT, Nakazato G (2020) Quorum sensing system: target to control the spread of bacterial infections. Microb Pathog 13(142):104068. https://doi.org/10.1016/j.micpath.2020.104068

    CAS  Article  Google Scholar 

  67. Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41. https://doi.org/10.1016/j.tplants.2017.09.003

    CAS  Article  PubMed  Google Scholar 

  68. Seal T (2016) Quantitative HPLC analysis of phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of two wild edible leaves, Sonchus arvensis and Oenanthe linearis of North-Eastern region in India. J Appl Pharm Sci 6:157–166. https://doi.org/10.7324/JAPS.2016.60225

    CAS  Article  Google Scholar 

  69. Shaw PD, Ping G, Daly SL, Cha C, Cronan JE, Rinehart KL, Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci USA 94:6036–6041. https://doi.org/10.1073/pnas.94.12.6036

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Singh VK, Mishra A, Jha B (2017) Anti-quorum sensing and anti-biofilm activity of delftia tsuruhatensis extract by attenuating the quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa. Front Cell Infect Microbiol 7:337. https://doi.org/10.3389/fcimb.2017.00337

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Srivastava N, Tiwari S, Bhandari K, Biswal AK, Rawat AK (2020) Novel derivatives of plant monomeric phenolics: act as inhibitors of bacterial cell-to-cell communication. Microb Pathog. https://doi.org/10.1016/j.micpath.2019.103856

    Article  PubMed  Google Scholar 

  72. Subhash S, Kanduri C (2016) GeneSCF: a real-time based functional enrichment tool with support for multiple organisms. BMC Bioinform 17:365. https://doi.org/10.1186/s12859-016-1250-z

    Article  Google Scholar 

  73. Szklarczyk D, Gable AL, Lyon D, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Pérez E (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucl Acids Res 47:D607–D613. https://doi.org/10.1093/nar/gky1131

    CAS  Article  PubMed  Google Scholar 

  74. Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N -Acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648. https://doi.org/10.1094/MPMI.2000.13.6.637

    CAS  Article  PubMed  Google Scholar 

  75. Tyagi K, Upadhyaya P, Sarma S, Tamboli V, Sreelakshmi Y, Sharma R (2015) High performance liquid chromatography coupled to mass spectrometry for profiling and quantitative analysis of folate monoglutamates in tomato. Food Chem 179:76–84. https://doi.org/10.1016/j.foodchem.2015.01.110

    CAS  Article  PubMed  Google Scholar 

  76. Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00356

    Article  PubMed  PubMed Central  Google Scholar 

  77. Vandeputte OM, Kiendrebeogo M, Rasamiravaka T, Stevigny C, Duez P, Rajaonson S, Diallo B, Mol A, Baucher M, El Jaziri M (2011) The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology 157:2120–2132. https://doi.org/10.1099/mic.0.049338-0

    CAS  Article  PubMed  Google Scholar 

  78. Vega C, Rodríguez M, Llamas I, Béjar V, Sampedro I (2020) Silencing of phytopathogen communication by the halotolerant PGPR Staphylococcus equorum strain EN21. Microorganisms 8:42. https://doi.org/10.3390/microorganisms8010042

    CAS  Article  Google Scholar 

  79. Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Plant Sci 21:187–198. https://doi.org/10.1016/j.tplants.2016.01.005

    CAS  Article  PubMed  Google Scholar 

  80. Wang S, Payne GF, Bentley WE (2020) Quorum sensing communication: molecularly connecting cells, their neighbors, and even devices. Annu Rev Chem Biomol Eng 11:447–468. https://doi.org/10.1146/annurev-chembioeng-101519-124728

    Article  PubMed  Google Scholar 

  81. Whitehead NA, Barnard AML, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in gram-negative bacteria. FEMS Microbiol Rev 25:365–404. https://doi.org/10.1111/j.1574-6976.2001.tb00583.x

    CAS  Article  PubMed  Google Scholar 

  82. Yadav V, Wang Z, Wei C, Amo A, Ahmed B, Yang X, Zhang X (2020) Phenylpropanoid pathway engineering: an emerging approach towards plant defense. Pathogens 9:312. https://doi.org/10.3390/pathogens9040312

    CAS  Article  PubMed Central  Google Scholar 

  83. Yang M, Meng F, Gu W, Li F, Tao Y, Zhang Z, Zhang F, Yang X, Li J, Yu J (2020) Effects of natural products on bacterial communication and network-quorum sensing. Biomed Res Int 2020:1–10. https://doi.org/10.1155/2020/8638103

    CAS  Article  Google Scholar 

  84. Yuan S-F, Yi X, Johnston TG, Alper HS (2020) De novo resveratrol production through modular engineering of an Escherichia coli–Saccharomyces cerevisiae co-culture. Microb Cell Fact 19:143. https://doi.org/10.1186/s12934-020-01401-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Zha J, Wu X, Gong G, Koffas MAG (2019) Pathway enzyme engineering for flavonoid production in recombinant microbes. Metab Eng Commun 9:e00104. https://doi.org/10.1016/j.mec.2019.e00104

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhang N, Wang D, Liu Y, Li S, Shen Q, Zhang R (2014) Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374:689–700. https://doi.org/10.1007/s11104-013-1915-6

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Ms. Anamika Saral acknowledge Department of Biotechnology (DBT), Govt. of India, New Delhi and to the Secretary and Joint Secretary, DBT for sanction of sabbatical leave for submission of Ph.D. thesis and financial support. Dr. Rekha Punchappady-Devasya, Deputy Director at Yenepoya Research Centre, Mangalore (Karnataka) is duly acknowledged for providing research facility for anti-quorum sensing activity.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kirtee Kumar Koul or Sameer Suresh Bhagyawant.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saral, A., Kanekar, S., Koul, K.K. et al. Plant growth promoting bacteria induce anti-quorum-sensing substances in chickpea legume seedling bioassay. Physiol Mol Biol Plants 27, 1577–1595 (2021). https://doi.org/10.1007/s12298-021-01034-x

Download citation

Keywords

  • Quorum sensing
  • PGPRs
  • UHPLC
  • Phenols
  • Phytohormone
  • Legume