Skip to main content

Is proline the quintessential sentinel of plants? A case study of postharvest flower senescence in Dianthus chinensis L.

Abstract

The present investigation primarily focussed on evaluating the efficacy of exogenous proline on the flower longevity of Dianthus chinensis L. Floral buds were harvested at the paint brush stage (i.e., a day prior to anthesis) and divided into 6 sets, with one set of buds (i.e., control) held in distilled water and rest of the 5 sets were supplemented with various concentrations of proline, viz., 10 mM, 20 mM, 30 mM, 40 mM and 50 mM. The application of proline at 40 mM concentration proved out to be most effective in improving the longevity of the flowers by about 4 days as compared to the control. The ameliorated longevity coincided with enhanced floral diameter, fresh mass, dry mass and water content. The flowers with delayed senescence also maintained higher soluble proteins, sugars and phenols. The results suggest that exogenous proline effectively alleviates oxidative stress in the petal tissue, as evident by a relatively lower maloendialdehyde content, which is manifested in the form of reduced lipid peroxidation (LPO). Reduced LPO was commensurate with increased membrane stability, quantified by membrane stability index. Moreover, the flowers with improved longevity exhibited a decline in lipoxygenase activity and significant augmentation of antioxidant enzymes superoxide dismutase, catalase and ascorbate peroxidase.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abdelaal KAA, Attia KA, Alamery SF, El-Afry MM, Ghazy AI, Tantawy DS, Al-Doss AA, El-Shawy ESE, Abu-Elsaoud AM, Hafez YM (2020) Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. Sustain 12:1736

    CAS  Article  Google Scholar 

  2. Aebi H (1984) Catalase in Vitro. Meth Enzymol 105:121–126

    CAS  Article  Google Scholar 

  3. Ahmad SS, Tahir I (2016a) How and why of flower senescence: understanding from models to ornamentals. Indian J Plant Physiol 21:446–456

    Article  Google Scholar 

  4. Ahmad SS, Tahir I (2016b) Increased oxidative stress, lipid peroxidation and protein degradation trigger senescence in Iris versicolor L. flowers. Physiol Mol Biol Plants 22:507–514

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Ahmad SS, Tahir I (2017) Regulatory role of phenols in flower development and senescence in the genus Iris. Indian J Plant Physiol 22:135–140

    Article  Google Scholar 

  6. Ahmed CB, Magdich S, Rouina BB, Sensoy S, Boukhris M, Abdullah FB (2011) Exogenous proline effects on water relations ions contents in leaves and roots of young olive. Amino Acids 40:565–573

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  7. AlKahtani MD, Hafez YM, Attia K, Rashwan E, Husnain LA, AlGwaiz HI, Abdelaal KA (2021) Evaluation of silicon and proline application on the oxidative machinery in drought-stressed sugar beet. Antioxid 10:398

    CAS  Article  Google Scholar 

  8. Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 25:1227–1238

    Google Scholar 

  9. Arrom L, Munné-Bosch S (2010) Tocopherol composition in flower organs of Lilium and its variations during natural and artificial senescence. Plant Sci 179:289–295

    CAS  Article  Google Scholar 

  10. Aspinal D, Paleg G (1981) Proline accumulation: physiological aspects. In: Paleg LG, Aspinall D (eds) The Physiology and Biochemistry of Drought Resistance in Plants. Academic Press, Sydney, Australia, pp 280–295

    Google Scholar 

  11. Ataii D, Naderi R, Khandan-Mirkohi A (2015) Exogenous putrescine delays senescence of Lisianthus cut flowers. J Ornam Plants 5:167–174

    Google Scholar 

  12. Axerold B, Chesbrough TM, Laakso S (1981) Lipoxygenase from soybean. In: Lowenstein JM (ed) Meth Enzymol. Academic press, New York, pp 441–451

    Google Scholar 

  13. Bartoli CG, Simontacchi M, Montaldi E, Puntarulo S (1996) Oxidative stress, antioxidant capacity and ethylene production during ageing of cut carnation (Dianthus caryophyllus) petals. J Exp Bot 47:595–601

    CAS  Article  Google Scholar 

  14. Chakrabarty D, Chatterjee J, Datta SK (2007) Oxidative stress and antioxidant activity as the basis of senescence in chrysanthemum florets. Plant Growth Regul 53:107–115

    CAS  Article  Google Scholar 

  15. Chakrabarty D, Verma AK, Datta SK (2009) Oxidative stress and antioxidant activity as the basis of senescence in Hemerocallis (day lily) flowers. J Hortic 1:113–119

    Google Scholar 

  16. Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    CAS  Article  Google Scholar 

  17. Dar RA, Tahir I, Ahmad SS (2015) Is the biochemical mechanism of petal senescence similar within a genus? A case study of Dianthus. Hortic Environ Biotechnol 56:654–661

    CAS  Article  Google Scholar 

  18. Dar MI, Naikoo MI, Rehman F, Naushin F, Khan FA (2016) Proline accumulation in plants: roles in stress tolerance and plant development. In: Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, New Delhi p 155-166

  19. Dhindsa RS, Plumb-Dhindsa PA, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    CAS  Article  Google Scholar 

  20. El-Shawa GM, Rashwan EM, Abdelaal KA (2020) Mitigating salt stress effects by exogenous application of proline and yeast extract on morpho-physiological, biochemical and anatomical characters of calendula plants. Sci J Flowers Ornam Plants 7:461–482

    Article  Google Scholar 

  21. Forlani G, Trovato M, Funck D, Signorelli S (2019) Regulation of proline accumulation and its molecular and physiological functions in stress defence. In: Osmoprotectant-mediated abiotic stress tolerance in plants Springer, Cham p. 73–97

  22. Fukuchi-Mizutani M, Ishiguro K, Nakayama T, Utsunomiya Y, Tanaka Y, Kusumi T, Ueda T (2000) Molecular and functional characterization of a rose lipoxygenase cDNA related to flower senescence. Plant Sci 160:129–137

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. Ghaffari H, Tadayon MR, Bahador M, Razmjoo J (2021) Investigation of the proline role in controlling traits related to sugar and root yield of sugar beet under water deficit conditions. Agric Water Manag 243:106448

  24. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physio 141:312–322

    CAS  Article  Google Scholar 

  25. Hanif S, Saleem MF, Sarwar M, Irshad M, Shakoor A, Wahid MA, Khan HZ (2020) Biochemically triggered heat and drought stress tolerance in rice by proline application. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10095-3

    Article  Google Scholar 

  26. Hasanuzzaman M, Alam M, Rahman A, Hasanuzzaman M, Nahar K, Fujita M (2014) Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. Biomed Res Int 2014:17

    Google Scholar 

  27. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. Hossain Z, Mandal AKA, Datta SK, Biswas AK (2006) Decline in ascorbate peroxidase activity–A prerequisite factor for tepal senescence in gladiolus. J Plant Physiol 163:186–194

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. Kumar N, Pal M, Srivastava GC (2009) Proline metabolism in senescing rose petals (Rosa hybrida L. ‘First Red’). J Hortic Sci Biotechnol 84:536–540

    CAS  Article  Google Scholar 

  31. Kumar N, Pal M, Singh A, SaiRam RK, Srivastava GC (2010) Exogenous proline alleviates oxidative stress and increase vase life in rose (Rosa hybrida L. ‘Grand Gala’). Sci Hortic 127:79–85

    CAS  Article  Google Scholar 

  32. Kumar V, Khare T, Srivastav A, Surekha C, Shriram V, Wani SH (2019) Oxidative stress and leaf senescence: important insights. In: Senescence Signalling and Control in Plants Academic Press p. 139–163

  33. Kwok D, Shetty K (1998) Effects of proline and proline analogs on total phenolic and rosmarinic acid levels in shoot clones of thyme (Thymus vulgaris L.). J Food Biochem 22:37–51

    CAS  Article  Google Scholar 

  34. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. Mattioli R, Costantino P, Trovato M (2009) Proline accumulation in plants: not only stress. Plant Signal Behav 4:1016–1018

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Mishra S, Dubey RS (2006) Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: role of proline as enzyme protectant. J Plant Physiol 163:927–936

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. Mohammadrezakhani S, Hajilou J, Rezanejad F, Zaare-Nahandi F (2019) Assessment of exogenous application of proline on antioxidant compounds in three Citrus species under low temperature stress. J Plant Interact 14:347–358

    CAS  Article  Google Scholar 

  38. Moustakas M, Sperdouli I, Kouna T, Antonopoulou CI, Therios I (2011) Exogenous proline induces soluble sugar accumulation and alleviates drought stress effects on photosystem II functioning of Arabidopsis thaliana leaves. Plant Growth Regul 65:315–325

    CAS  Article  Google Scholar 

  39. Nakhaie A, Habibi G, Vaziri A (2020) Exogenous proline enhances salt tolerance in acclimated Aloe vera by modulating photosystem II efficiency and antioxidant defense. S Afr J Bot. https://doi.org/10.1016/j.sajb.2020.06.005

    Article  Google Scholar 

  40. Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Article  Google Scholar 

  41. Nisar S, Dar RA, Tahir I (2021) Salicylic acid retards senescence and makes flowers last longer in Nicotiana plumbaginifolia (Viv). Plant Physiol Rep 26:128–136

    CAS  Article  Google Scholar 

  42. Ozden M, Demirel U, Kahraman A (2009) Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Sci Hortic 119:163–168

    CAS  Article  Google Scholar 

  43. Peary JS, Prince TA (1990) Floral lipoxygenase: activity during senescence and inhibition by phenidone. J Am Soc Hortic 115:455–457

    CAS  Article  Google Scholar 

  44. Rady Taha Mahdi nMRSAH (2016) Proline enhances growth, productivity and anatomy of two varieties of Lupinus termis L. grown under salt stress. S Afr J Bot 102:221–227

    Article  CAS  Google Scholar 

  45. Rogers HJ (2012) Is there an important role for reactive oxygen species and redox regulation during floral senescence? Plant Cell Environ 35:217–233

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. Rogers H, Munné-Bosch S (2016) Production and scavenging of reactive oxygen species and redox signaling during leaf and flower senescence: similar but different. Plant Physiol 171:1560–1568

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Rouet-Mayer MA, Bureau JM, Lauriere C (1992) Identification and characterization of lipoxygenase isoforms in senescing carnation petals. Plant Physiol 98:971–978

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Rubinstein B (2000) Regulation of cell death in flower petals. In: Lam E, Fukuda H, Greenberg J (eds) Programmed Cell Death in Higher Plants. Springer, Dordrecht, pp 59–74

    Chapter  Google Scholar 

  49. Saeed T, Hassan I, Abbasi NA, Jilani G (2016) Antioxidative activities and qualitative changes in gladiolus cut flowers in response to salicylic acid application. Sci Hortic 210:236–241

    CAS  Article  Google Scholar 

  50. Sairam RK (1994) Effect of moisture-stress on physiological activities of two contrasting wheat genotypes. Indian J Exp Biol 32:594–594

    Google Scholar 

  51. Seleiman MF, Semida WM, Rady nM, Mohamed GF, Hemida KA, Alhammad BA, Shami A (2020) Sequential application of antioxidants rectifies ion imbalance and strengthens antioxidant systems in salt-stressed cucumber. Plants 9:1783

    CAS  PubMed Central  Article  Google Scholar 

  52. Shinde S, Villamor JG, Lin W, Sharma S, Verslues PE (2016) Proline coordination with fatty acid synthesis and redox metabolism of chloroplast and mitochondria. Plant Physiol 172:1074–1088

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Swain T, Hillis WE (1959) The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. J Sci Food Agric 10:63–68

    CAS  Article  Google Scholar 

  54. Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. Trippi V, Paulin A (1984) The senescence of cut carnations: a phasic phenomenon. Physiol Plant 60:221–226

    CAS  Article  Google Scholar 

  56. Wang C, Lü P, Zhong S, Chen H, Zhou B (2017) LcMCII-1 is involved in the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis. Plant Cell Rep 36:89–102

    CAS  PubMed  Article  Google Scholar 

  57. Zhang Y, Guo WM, Chen SM, Han L, Li ZM (2007) The role of N-lauroylethanolamine in the regulation of senescence of cut carnations (Dianthus caryophyllus). J Plant Physiol 164:993–1001

    CAS  PubMed  Article  Google Scholar 

  58. Zimmermann P, Zentgraf U (2005) The correlation between oxidative stress and leaf senescence during plant development. Cell Mol Biol Lett 10:515

    CAS  PubMed  Google Scholar 

  59. Zouari M, Hassena AB, Trabelsi L, Rouina BB, Decou R, Labrousse P (2019) Exogenous proline-mediated abiotic stress tolerance in plants: Possible mechanisms. Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants. Springer, Cham, pp 99–121

    Chapter  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Inayatullah Tahir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parveen, S., Altaf, F., Farooq, S. et al. Is proline the quintessential sentinel of plants? A case study of postharvest flower senescence in Dianthus chinensis L.. Physiol Mol Biol Plants 27, 1597–1607 (2021). https://doi.org/10.1007/s12298-021-01028-9

Download citation

Keywords

  • Antioxidant enzymes
  • Dianthus chinensis
  • Flower longevity
  • Lipid peroxidation
  • Lipoxygenase
  • Proline