Skip to main content

XSP10 and SlSAMT, Fusarium wilt disease responsive genes of tomato (Solanum lycopersicum L.) express tissue specifically and interact with each other at cytoplasm in vivo

Abstract

Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol) is a major fungal disease of tomato (Solanum lycopersicum L.). Xylem sap protein 10 (XSP10) and Salicylic acid methyl transferase (SlSAMT) have been identified as putative negative regulatory genes associated with Fusarium wilt of tomato. Despite their importance as potential genes for developing Fusarium wilt disease tolerance, very little knowledge is available about their expression, cell biology, and functional genomics. Semi-quantitative and quantitative real-time PCR expression analysis of XSP10 and SlSAMT, in this study, revealed higher expression in root and flower tissue respectively in different tomato cultivars viz. Micro-Tom (MT), Arka Vikas (AV), and Arka Abhed (AA). Therefore, the highly up-regulated expression of XSP10 and SlSAMT in biotic stress susceptible tomato cultivar (AV) than a multiple disease resistant cultivar (AA) suggested the disease susceptibility nature of these genes for Fusarium wilt. Sub-cellular localization analysis through the expression of gateway cloning constructs in tomato protoplasts and seedlings showed the predominant localization of XSP10 in the nucleus and SlSAMT at the cytoplasm. A strong in vivo protein–protein interaction of XSP10 with SlSAMT at cytoplasm from bi-molecular fluorescent complementation study suggested that these two proteins function together in regulating responses to Fusarium wilt tolerance in tomato.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

XSP:

Xylem sap protein

SAMT:

Salicylic acid methyl transferase

MeSA:

Methyl salicylate

RT-PCR:

Reverse transcriptase polymerase chain reaction

qRT-PCR:

Quantitative real time polymerase chain reaction

PPI:

Protein–protein interactions

Split-YFP:

Split-yellow fluorescence protein

Bi-FC:

Bimolecular fluorescence complementation

TRAX:

Translin-associated factor X

CCoAOMT:

Caffeoyl-CoA O-methyltransferase

References

  1. Alvarez S, Marsh EL, Schroeder SG, Schachtman DP (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ 31:325–340. https://doi.org/10.1111/j.1365-3040.2007.01770.x

    CAS  Article  PubMed  Google Scholar 

  2. Ament K, Krasikov V, Allmann S et al (2010) Methyl salicylate production in tomato affects biotic interactions. Plant J 62:124–134. https://doi.org/10.1111/j.1365-313X.2010.04132.x

    CAS  Article  PubMed  Google Scholar 

  3. Baruah I, Baruah G, Sahu J et al (2020) Transient sub-cellular localization and in vivo protein-protein interaction study of multiple abiotic stress-responsive AteIF4A-III and AtALY4 proteins in Arabidopsis thaliana. Plant Mol Biol Report 38:538–553. https://doi.org/10.1007/s11105-020-01219-w

    CAS  Article  Google Scholar 

  4. Biles CL, Abeles FB (1991) Xylem sap proteins. Plant Physiol 96:597–601. https://doi.org/10.1104/pp.96.2.597

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Blein JP, Coutos-Thévenot P, Marion D, Ponchet M (2002) From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends Plant Sci 7:293–296. https://doi.org/10.1016/S1360-1385(02)02284-7

    CAS  Article  PubMed  Google Scholar 

  6. Buhtz A, Kolasa A, Arlt K et al (2004) Xylem sap protein composition is conserved among different plant species. Planta 219:610–618. https://doi.org/10.1007/s00425-004-1259-9

    CAS  Article  PubMed  Google Scholar 

  7. Cao L, Blekemolen MC, Tintor N et al (2018) The Fusarium oxysporum Avr2-Six5 effector pair alters plasmodesmatal exclusion selectivity to facilitate cell-to-cell movement of Avr2. Mol Plant 11:691–705. https://doi.org/10.1016/j.molp.2018.02.011

    CAS  Article  PubMed  Google Scholar 

  8. Chen F, D’Auria JC, Tholl D et al (2003) An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J 36:577–588. https://doi.org/10.1046/j.1365-313X.2003.01902.x

    CAS  Article  PubMed  Google Scholar 

  9. Chennathukuzhi VM, Kurihara Y, Bray JD, Hecht NB (2001) Trax (Translin-associated Factor X), a Primarily Cytoplasmic Protein, Inhibits the Binding of TB-RBP (Translin) to RNA. J Biol Chem 276:13256–13263. https://doi.org/10.1074/jbc.M009707200

    CAS  Article  PubMed  Google Scholar 

  10. Chittela RK, Gupta GD, Ballal A (2014) Characterization of a plant (rice) translin and its comparative analysis with human translin. Planta 240:357–368. https://doi.org/10.1007/s00425-014-2092-4

    CAS  Article  PubMed  Google Scholar 

  11. Cregeen S, Radisek S, Mandelc S et al (2015) Different gene expressions of resistant and susceptible Hop cultivars in response to infection with a highly aggressive strain of Verticillium albo-atrum. Plant Mol Biol Report 33:689–704. https://doi.org/10.1007/s11105-014-0767-4

    CAS  Article  PubMed  Google Scholar 

  12. Das S, Bansal M (2019) Variation of gene expression in plants is influenced by gene architecture and structural properties of promoters. PLoS ONE 14:e0212678. https://doi.org/10.1371/journal.pone.0212678

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. de Lamo FJ, Constantin ME, Fresno DH et al (2018) Xylem Sap proteomics reveals distinct differences between R gene- and endophyte-mediated resistance against Fusarium Wilt disease in tomato. Front Microbiol 9:1–13. https://doi.org/10.3389/fmicb.2018.02977

    Article  Google Scholar 

  14. Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. The Arabidopsis Book 9:e0156. https://doi.org/10.1199/tab.0156

    Article  PubMed  PubMed Central  Google Scholar 

  15. Di X, Gomila J, Takken FLW (2017) Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. Mol Plant Pathol 18:1024–1035. https://doi.org/10.1111/mpp.12559

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Dönnes P, Höglund A (2004) Predicting protein subcellular localization: past, present, and future. Genomics Proteomics Bioinformatics 2:209–215. https://doi.org/10.1016/S1672-0229(04)02027-3

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dresselhaus T, Hückelhoven R (2018) Biotic and abiotic stress responses in crop plants. Agronomy 8:8–13. https://doi.org/10.3390/agronomy8110267

    CAS  Article  Google Scholar 

  18. Effmert U, Saschenbrecker S, Ross J et al (2005) Floral benzenoid carboxyl methyltransferases: From in vitro to in planta function. Phytochemistry 66:1211–1230. https://doi.org/10.1016/j.phytochem.2005.03.031

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Eklund DM, Edqvist J (2003) Localization of nonspecific lipid transfer proteins correlate with programmed cell death responses during endosperm degradation in Euphorbia lagascae seedlings. Plant Physiol 132:1249–1259. https://doi.org/10.1104/pp.103.020875

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Gawehns F, Ma L, Bruning O et al (2015) The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection. Front Plant Sci 6:1–17. https://doi.org/10.3389/fpls.2015.00967

    Article  Google Scholar 

  21. Gehl C, Waadt R, Kudla J et al (2009) New GATEWAY vectors for high throughput analyses of protein-protein interactions by bimolecular fluorescence complementation. Mol Plant 2:1051–1058. https://doi.org/10.1093/mp/ssp040

    CAS  Article  PubMed  Google Scholar 

  22. Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525. https://doi.org/10.1111/J.1364-3703.2004.00252.X

    CAS  Article  PubMed  Google Scholar 

  23. Guadagno CR, Ewers BE, Speckman HN et al (2017) Dead or alive? using membrane failure and chlorophyll a fluorescence to predict plant mortality from drought. Plant Physiol 175:223–234. https://doi.org/10.1104/pp.16.00581

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25. https://doi.org/10.1016/j.envexpbot.2009.08.005

    CAS  Article  Google Scholar 

  25. Houterman PM, Speijer D, Dekker HL et al (2007) The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Mol Plant Pathol 8:215–221. https://doi.org/10.1111/j.1364-3703.2007.00384.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Huo A, Chen Z, Wang P et al (2017) Establishment of transient gene expression systems in protoplasts from Liriodendron hybrid mesophyll cells. PLOSE ONE 1–14. https://doi.org/10.1371/journal.pone.0172475

  27. Joshi R (2018) A review of Fusarium oxysporum on its plant interaction and industrial use. J Med Plants Stud 6:112–115. https://doi.org/10.22271/plants.2018.v6.i3b.07

  28. Kolosova N, Sherman D, Karlson D, Dudareva N (2001) Cellular and subcellular localization of S-Adenosyl-L-Methionine: benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile Ester Methylbenzoate in Snapdragon Flowers 1. Plant Physiol 126:956–964

    CAS  Article  Google Scholar 

  29. Koo YJ, Kim MA, Kim EH et al (2007) Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Mol Biol 64:1–15. https://doi.org/10.1007/s11103-006-9123-x

    CAS  Article  PubMed  Google Scholar 

  30. Krasikov V, Dekker HL, Rep M, Takken FLW (2011) The tomato xylem sap protein XSP10 is required for full susceptibility to Fusarium wilt disease. J Exp Bot 62:963–973. https://doi.org/10.1093/jxb/erq327

    CAS  Article  PubMed  Google Scholar 

  31. Lagopodi AL, Ram AFJ, Lamers GEM et al (2002) Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici Revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Mol Plant Microbe Interact 15:172–179. https://doi.org/10.1094/MPMI.2002.15.2.172

    CAS  Article  PubMed  Google Scholar 

  32. Ligat L, Lauber E, Albenne C et al (2011) Analysis of the xylem sap proteome of Brassica oleracea reveals a high content in secreted proteins. Proteomics 11:1798–1813. https://doi.org/10.1002/pmic.201000781

    CAS  Article  PubMed  Google Scholar 

  33. Lima Silva CC de, Shimo HM, de Felício R et al (2019) Structure-function relationship of a citrus salicylate methylesterase and role of salicylic acid in citrus canker resistance. Sci Rep 9:3901. https://doi.org/10.1038/s41598-019-40552-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Liu PP, Yang Y, Pichersky E, Klessig DF (2010) Altering expression of benzoic acid/salicylic acid carboxyl methyltransferase 1 compromises systemic acquired resistance and PAMP-triggered immunity in Arabidopsis. Mol Plant Microbe Interact 23:82–90. https://doi.org/10.1094/MPMI-23-1-0082

    CAS  Article  PubMed  Google Scholar 

  35. Liu PP, von Dahl CC, Park SW, Klessig DF (2011) Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and Tobacco. Plant Physiol 155:1762–1768. https://doi.org/10.1104/pp.110.171694

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Liu Z, Zhao J, Li Y et al (2012) Non-uniform distribution pattern for differentially expressed genes of transgenic rice Huahui 1 at different developmental stages and environments. PLoS ONE 7:1–8. https://doi.org/10.1371/journal.pone.0037078

    CAS  Article  Google Scholar 

  37. Liu W, Xie Y, Ma J et al (2015) IBS: An illustrator for the presentation and visualization of biological sequences. Bioinformatics 31:3359–3361. https://doi.org/10.1093/bioinformatics/btv362

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  Article  PubMed  Google Scholar 

  39. Luo J-S, Zhang Z (2019) Proteomic changes in the xylem sap of Brassica napus under cadmium stress and functional validation. BMC Plant Biol 19:280. https://doi.org/10.1186/s12870-019-1895-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Maruri-López I, Aviles-Baltazar NY, Buchala A, Serrano M (2019) Intra and extracellular journey of the phytohormone salicylic acid. Front Plant Sci 10:1–11. https://doi.org/10.3389/fpls.2019.00423

    Article  Google Scholar 

  41. Masahito Shikata and Hiroshi Ezura (2016) Plant Signal Transduction. Springer, New York, New York, NY

    Google Scholar 

  42. Masuda S, Sakuta C, Satoh S (1999) cDNA cloning of a novel Lectin-Like Xylem Sap Protein and its root-specific expression in cucumber. Plant Cell Physiol 40:1177–1181. https://doi.org/10.1093/oxfordjournals.pcp.a029504

    CAS  Article  PubMed  Google Scholar 

  43. Mes JJ, Weststeijn EA, Herlaar F et al (1999) Biological and molecular characterization of Fusarium oxysporum f. sp. lycopersici divides race 1 isolates into separate virulence groups. Phytopathology 89:156–160. https://doi.org/10.1094/PHYTO.1999.89.2.156

    CAS  Article  PubMed  Google Scholar 

  44. Negre F, Kolosova N, Knoll J et al (2002) Novel S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, an enzyme responsible for biosynthesis of methyl salicylate and methyl benzoate, is not involved in floral scent production in snapdragon flowers. Arch Biochem Biophys 406:261–270. https://doi.org/10.1016/s0003-9861(02)00458-7

    CAS  Article  PubMed  Google Scholar 

  45. Nirmaladevi D, Venkataramana M, Srivastava RK et al (2016) Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici. Scientific Reports 6:21367. https://doi.org/10.1038/srep21367

  46. Olivain C, Alabouvette C (1999) Process of tomato root colonization by a pathogenic strain of Fusarium oxysporum f. sp. lycopersici in comparison with a non-pathogenic strain. New Phytol 141:497–510. https://doi.org/10.1046/j.1469-8137.1999.00365.x

    Article  Google Scholar 

  47. Pott MB, Effmert U, Piechulla B (2003) Transcriptional and post-translational regulation of S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase (SAMT) duringStephanotis floribunda flower development. J Plant Physiol 160:635–643. https://doi.org/10.1078/0176-1617-00968

    CAS  Article  PubMed  Google Scholar 

  48. Prihatna C, Barbetti MJ, Barker SJ (2018) A novel tomato Fusarium wilt tolerance gene. Front Microbiol 9:1–11. https://doi.org/10.3389/fmicb.2018.01226

    Article  Google Scholar 

  49. Ranjan A, Ichihashi Y, Sinha NR (2012) The tomato genome: implications for plant breeding, genomics and evolution. Genome Biol 13:167. https://doi.org/10.1186/gb4037

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rep M, Dekker HL, Vossen JH et al (2003a) A tomato xylem sap protein represents a new family of small cysteine-rich proteins with structural similarity to lipid transfer proteins. FEBS Lett 534:82–86. https://doi.org/10.1016/S0014-5793(02)03788-2

    CAS  Article  PubMed  Google Scholar 

  51. Rep M, Dekker HL, Vossen JH et al (2003b) Mass Spectrometric Identification of Isoforms of PR Proteins in Xylem Sap of Fungus-Infected Tomato 1. Plant Physiol 130:904–917. https://doi.org/10.1104/pp.007427.only

    Article  Google Scholar 

  52. Rep M, Van Der Does HC, Meijer M et al (2004) A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Mol Microbiol 53:1373–1383. https://doi.org/10.1111/j.1365-2958.2004.04177.x

    CAS  Article  PubMed  Google Scholar 

  53. Rep M, Meijer M, Houterman PM et al (2005) Fusarium oxysporum evades I-3-mediated resistance without altering the matching avirulence gene. Mol Plant Microbe Interact 18:15–23. https://doi.org/10.1094/MPMI-18-0015

    CAS  Article  PubMed  Google Scholar 

  54. Ross JR, Nam KH, D’Auria JC, Pichersky E (1999) S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases. Arch Biochem Biophys 367:9–16. https://doi.org/10.1006/abbi.1999.1255

    CAS  Article  PubMed  Google Scholar 

  55. Ruelland E, Campalans A, Selman-Housein G et al (2003) Cellular and subcellular localization of the lignin biosynthetic enzymes caffeic acid-O-methyltransferase, cinnamyl alcohol dehydrogenase and cinnamoyl-coenzyme A reductase in two monocots, sugarcane and maize. Physiol Plant 117:93–99. https://doi.org/10.1034/j.1399-3054.2003.1170112.x

    CAS  Article  Google Scholar 

  56. Saikia B, Debbarma J, Maharana J et al (2020) SlHyPRP1 and DEA1, the multiple stress responsive eight-cysteine motif family genes of tomato (Solanum lycopersicum L.) are expressed tissue specifically, localize and interact at cytoplasm and plasma membrane in vivo. Physiol Mol Biol Plants 26:2553–2568. https://doi.org/10.1007/s12298-020-00913-z

    CAS  Article  PubMed  Google Scholar 

  57. Salminen TA, Blomqvist K, Edqvist J (2016) Lipid transfer proteins: classification, nomenclature, structure, and function. Planta 244:971–997. https://doi.org/10.1007/s00425-016-2585-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Satoh S (2006) Organic substances in xylem sap delivered to above-ground organs by the roots. J Plant Res 119:179–187. https://doi.org/10.1007/s10265-005-0257-8

    CAS  Article  PubMed  Google Scholar 

  59. Subramanian S, Cho U-H, Keyes C, Yu O (2009) Distinct changes in soybean xylem sap proteome in response to pathogenic and symbiotic microbe interactions. BMC Plant Biol 9:119. https://doi.org/10.1186/1471-2229-9-119

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Sunitha DCN, N RK, et al (2020) International Journal of Ecology and Environmental Sciences Assessment of tomato (Solanum lycopersicon L.) hybrids for performance and adoptability at Srikakulam District, Andhra Pradesh. Interantional Journal of Ecology and Environmental Sciences 2:317–319

    Google Scholar 

  61. Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452. https://doi.org/10.1093/nar/gku1003

    CAS  Article  PubMed  Google Scholar 

  62. Tieman D, Zeigler M, Schmelz E et al (2010) Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. Plant J 113–123. https://doi.org/10.1111/j.1365-313X.2010.04128.x

  63. Ueki S, Magori S, Lacroix B, Citovsky V (2013) Transient gene expression in epidermal cells of plant leaves by Biolistic DNA delivery. Methods Mol Biol 940:17–26. https://doi.org/10.1007/978-1-62703-110-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Upreti R, Thomas P (2015) Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects. Front Microbiol 6:1–12. https://doi.org/10.3389/fmicb.2015.00255

    Article  Google Scholar 

  65. van der Does HC, Constantin ME, Houterman PM et al (2019) Fusarium oxysporum colonizes the stem of resistant tomato plants, the extent varying with the R-gene present. Eur J Plant Pathol 154:55–65. https://doi.org/10.1007/s10658-018-1596-3

    Article  Google Scholar 

  66. Walker AM, Sattler SA, Regner M et al (2016) The structure and catalytic mechanism of Sorghum bicolor Caffeoyl-CoA O-methyltransferase. Plant Physiol 172:78–92. https://doi.org/10.1104/pp.16.00845

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Wu L, Wang X, Xu R, Li H (2013) Difference between resistant and susceptible maize to systematic colonization as revealed by DsRed-labeled Fusarium verticillioides. The Crop Journal 1:61–69. https://doi.org/10.1016/j.cj.2013.07.004

    Article  Google Scholar 

  68. Yang Q, He Y, Kabahuma M et al (2017) A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nat Genet 49:1364–1372. https://doi.org/10.1038/ng.3919

    CAS  Article  PubMed  Google Scholar 

  69. Yang J, Wang X, Xie M et al (2019) Proteomic analyses on xylem sap provides insights into the defense response of Gossypium hirsutum against Verticillium dahliae. J Proteomics 213:103599. https://doi.org/10.1016/j.jprot.2019.103599

    CAS  Article  PubMed  Google Scholar 

  70. Yoo S-D, Cho Y-H, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572. https://doi.org/10.1038/nprot.2007.199

    CAS  Article  PubMed  Google Scholar 

  71. Yu C, Cheng C, Su W et al (2014) CELLO2GO: a web server for protein subCELlular LOcalization Prediction with Functional Gene Ontology Annotation. PLoS ONE 9:e99368. https://doi.org/10.1371/journal.pone.0099368

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Yue J, Xu W, Ban R et al (2016) PTIR: Predicted Tomato Interactome Resource. Sci Rep 6. https://doi.org/10.1038/srep25047

  73. Zhang G, Zhang W (2019) Protein–protein interaction network analysis of insecticide resistance molecular mechanism in Drosophila melanogaster. Arch Insect Biochem Physiol 100:e21523. https://doi.org/10.1002/arch.21523

    CAS  Article  PubMed  Google Scholar 

  74. Zhang Z, Xin W, Wang S et al (2015) Xylem sap in cotton contains proteins that contribute to environmental stress response and cell wall development. Funct Integr Genomics 15:17–26. https://doi.org/10.1007/s10142-014-0395-y

    CAS  Article  PubMed  Google Scholar 

  75. Zubieta C, Ross JR, Koscheski P et al (2003) Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell 15:1704–1716. https://doi.org/10.1105/tpc.014548.lease

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Director, CSIR-NEIST Jorhat for the facility and lab space. Authors thank ICAR-IIHR, Bangalore for providing the seeds of tomato cultivars. Authors also acknowledge Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India for PhD program of JD and BS.

Funding

The work was funded by Science and Engineering Research Board (SERB), Govt. of India, Grant Code: SB/S2/RJN-078/2014 as Ramanujan Fellowship and Grant Code: ECR/2016/001288 as Early Career Research Award to C.C.

Author information

Affiliations

Authors

Contributions

CC designed the concept, discussed and corrected the manuscript and involved in overall co-ordination of the project. JD collected the data, performed all the experiments, prepared the figures and tables, analysed the data and drafted the manuscript. BS carried out data analysis, helped in qRT-PCR experiments and corrected the manuscript. DLS, JM, NV, HD and KPA have revised the manuscript, revised the figures, provided critical comments, helped in analysis and corrected the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Channakeshavaiah Chikkaputtaiah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5247 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Debbarma, J., Saikia, B., Singha, D.L. et al. XSP10 and SlSAMT, Fusarium wilt disease responsive genes of tomato (Solanum lycopersicum L.) express tissue specifically and interact with each other at cytoplasm in vivo. Physiol Mol Biol Plants 27, 1559–1575 (2021). https://doi.org/10.1007/s12298-021-01025-y

Download citation

Keywords

  • Cytoplasm
  • Nucleus
  • Fusarium wilt
  • In vivo
  • XSP10
  • SlSAMT