Skip to main content

Identification of GH17 gene family in Vitis vinifera and expression analysis of GH17 under various adversities

Abstract

Glycoside hydrolase (GH, EC 3.2.1) is a group of enzymes that hydrolyzes glycosidic bonds and play a role in the hydrolysis and synthesis of sugars in living organisms. Vitis vinifera is an important fruit crop and it harbors GH17 gene family however, their function in grapes has not been systematically investigated. In this study, a total of 870 GH17 genes were identified from 14 plant species and their structural domain, sequence alignment, phylogenetic tree, collinear analysis, with the expression profiles of VviGH17 gene family was performed. The promoter analysis of VviGH17 gene showed the presence of cis-acting elements, which are responsive to plant growth and development. In addition, elements for plant hormones were found that are triggered in response to abiotic/biological stress. Transcriptomic data led to the identification of several VviGH17 genes, which are associated with bud dormancy and in response to abiotic stress. Transcript analysis was carried out for some of the selected VviGH17 genes RT-qPCR. VviGH17-16 and VviGH17-30 genes were differentially expressed during bud dormancy, fruit development and different abiotic stresses. Moreover, VviGH17-37 and VviGH17-44 were differentially expressed at fruit development, in response to abiotic stress. In addition, subcellular localization predicts that the VviGH17-16, VviGH17-30, and VviGH17-37 genes were located in the cell membrane, while VviGH17-44 gene was located in the vacuole. In conclusion, our study led to the identification of several GH17s and their probable role in development and stress.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Availability of data and material

Not Applicable.

Code availability

Not Applicable.

References

  1. Badur AH, Ammar EM, Yalamanchili G, Hehemann J-H, Rao CV (2020) Characterization of the GH16 and GH17 laminarinases from Vibrio breoganii 1C10. Appl Microbiol Biotechnol 104(1):161–171

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. Bae SH, Han HW, Moon J (2015) Functional analysis of the molecular interactions of TATA box-containing genes and essential genes. PLoS ONE 10:e0120848

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. Buiate E et al (2018) Correction to: a comparative genomic analysis of putative pathogenicity genes in the host-specific sibling species Colletotrichum graminicola and Colletotrichum sublineola. BMC Genom 19(1):1–1

    Article  Google Scholar 

  4. Cao Y, Han Y, Li D, Lin Y, Cai Y (2016) MYB transcription factors in chinese pear (Pyrus bretschneideri Rehd.): genome-wide identification, classification, and expression profiling during fruit development. Front Plant Sci 7:577

    PubMed  PubMed Central  Google Scholar 

  5. Chaari F, Chaabouni SE (2019) Fungal β-1, 3–1, 4-glucanases: production, proprieties and biotechnological applications. J Sci Food Agric 99(6):2657–2664

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. Chou K-C, Shen H-B (2010) Cell-PLoc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms. Nat Sci 2(10):1090

    CAS  Google Scholar 

  7. Cooke JE, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ 35(10):1707–1728

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. Dirlewanger E et al (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105(1):127–138

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. Edwards D (2008) Plant bioinformatics: methods and protocols, vol 406. Springer, Berlin

    Google Scholar 

  10. Eklöf JM, Brumer H (2010) The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiol 153(2):456–466

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. Falavigna VdS, Guitton B, Costes E, Andrés F (2019) I want to (Bud) break free: the potential role of DAM and SVP-like genes in regulating dormancy cycle in temperate fruit trees. Front Plant Sci 9:1990

    PubMed  PubMed Central  Article  Google Scholar 

  12. Fincher GB (2009) Exploring the evolution of (1, 3; 1, 4)-β-D-glucans in plant cell walls: comparative genomics can help! Curr Opin Plant Biol 12(2):140–147

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. Flicek P et al (2014) Ensembl 2014. Nucl Acids Res 42(D1):D749–D755

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. Gaudioso-Pedraza R, Benitez-Alfonso Y (2014) A phylogenetic approach to study the origin and evolution of plasmodesmata-localized glycosyl hydrolases family 17. Front Plant Sci 5:212

    PubMed  PubMed Central  Article  Google Scholar 

  15. Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8(1):93–102

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. Gould J (2016) Morpheus: Versatile matrix visualization and analysis software [WWW Document]. https://softwarebroadinstitute.org/morpheus. Accessed 9 Jan 18

  17. Ho C-L, Geisler M (2019) Genome-wide computational identification of biologically significant cis-regulatory elements and associated transcription factors from rice. Plants 8(11):441

    CAS  PubMed Central  Article  Google Scholar 

  18. Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8(11):534–540

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. Houston K, Tucker MR, Chowdhury J, Shirley N, Little A (2016) The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions. Front Plant Sci 7:984

    PubMed  PubMed Central  Article  Google Scholar 

  20. Hrmova M, Fincher GB (2009) Plant and microbial enzymes involved in the depolymerization of (1, 3)-β-d-glucans and related polysaccharides chemistry, biochemistry, and biology of 1–3 beta glucans and related polysaccharides. Elsevier, London, pp 119–170

    Book  Google Scholar 

  21. Kuge T et al (2015) Action of an endo-β-1, 3 (4)-glucanase on cellobiosyl unit structure in barley β-1, 3: 1, 4-glucan. Biosci Biotechnol Biochem 79(11):1810–1817

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Kumar R, Agarwal P, Tyagi AK, Sharma AK (2012) Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Mol Genet Genom 287(3):221–235

    CAS  Article  Google Scholar 

  23. Laloum T, Mita SD, Gamas P, Baudin M, Niebel A (2013) CCAAT-box binding transcription factors in plants: Y so many? Trends Plant Sci 18(3):157–166

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. Lang G, Early J, Martin G, Darnell R (1987) Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22(3):371–377

    Google Scholar 

  25. Leng X et al (2019) Genome-wide identification and transcript analysis of TCP transcription factors in grapevine. BMC Genom 20(1):786

    Article  CAS  Google Scholar 

  26. Leseberg CH, Li A, Kang H, Duvall M, Mao L (2006) Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378:84–94

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. Li M, Feng F, Cheng L (2012) Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS ONE 7(3):e33055

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Li Y et al (2019a) Transcriptome and metabolome reveal distinct carbon allocation patterns during internode sugar accumulation in different sorghum genotypes. Plant Biotechnol J 17(2):472–487

    CAS  Article  Google Scholar 

  29. Li H et al (2019b) Genome-wide analysis of the bHLH gene family in Chinese jujube (Ziziphus jujuba Mill.) and wild jujube. BMC Genom 20(1):568

    Article  CAS  Google Scholar 

  30. Lin-Wang K et al (2014) Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Front Plant Sci 5:651

    PubMed  PubMed Central  Article  Google Scholar 

  31. Marchin M, Kelly PT, Fang J (2005) Tracker: continuous HMMER and BLAST searching. Bioinformatics 21(3):388–389

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Mestre P et al (2017) Identification of a Vitis vinifera endo-β-1, 3-glucanase with antimicrobial activity against Plasmopara viticola. Mol Plant Pathol 18(5):708–719

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. Ming R et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452(7190):991–996

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Mohamed HB, Vadel AM, Geuns JM, Khemira H (2010) Biochemical changes in dormant grapevine shoot tissues in response to chilling: possible role in dormancy release. Sci Hortic 124(4):440–447

    Article  CAS  Google Scholar 

  35. Ökmen B, Bachmann D, De Wit PJ (2019) A conserved GH17 glycosyl hydrolase from plant pathogenic dothideomycetes releases a DAMP causing cell death in tomato. Mol Plant Pathol 20(12):1710–1721

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Patil G et al (2015) Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genom 16(1):520

    Article  CAS  Google Scholar 

  37. Ragni E, Fontaine T, Gissi C, Latge JP, Popolo L (2007) The Gas family of proteins of Saccharomyces cerevisiae: characterization and evolutionary analysis. Yeast 24(4):297–308

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. Ralph S et al (2006) Genomics of hybrid poplar (Populus trichocarpa× deltoides) interacting with forest tent caterpillars (Malacosoma disstria): normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences in poplar. Mol Ecol 15(5):1275–1297

    PubMed  Article  PubMed Central  Google Scholar 

  39. Rinne PL, Kaikuranta PM, Schoot CVD (2001) The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J 26(3):249–264

    CAS  PubMed  Article  Google Scholar 

  40. Rinne P et al (2011a) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23(1):130–146

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Rinne PL et al (2011b) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1, 3-β-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23(1):130–146

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Rinne PL, Paul LK, Vahala J, Kangasjarvi J, van der Schoot C (2016a) Axillary buds are dwarfed shoots that tightly regulate GA pathway and GA-inducible 1,3-beta-glucanase genes during branching in hybrid aspen. J Exp Bot 67(21):5975–5991. https://doi.org/10.1093/jxb/erw352

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Rinne PL, Paul LK, Vahala J, Kangasjärvi J, van der Schoot C (2016b) Axillary buds are dwarfed shoots that tightly regulate GA pathway and GA-inducible 1, 3-β-glucanase genes during branching in hybrid aspen. J Exp Bot 67(21):5975–5991

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Rombauts S, Florquin K, Lescot M, Marchal K, Rouzé P, Van de Peer Y (2003) Computational approaches to identify promoters and cis-regulatory elements in plant genomes. Plant Physiol 132(3):1162–1176

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Ruijter JM, Ramakers C (2003) LinRegPCR: analysis of real-time quantitative PCR data. User Manual provided with software

  46. Schrader J et al (2010) Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant J 40(2):173–187

    Article  CAS  Google Scholar 

  47. Seymour GB, Østergaard L, Chapman NH, Knapp S, Martin C (2013) Fruit development and ripening. Annu Rev Plant Biol 64:219–241

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. Shangguan L, Fang X, Chen L, Cui L, Fang J (2018) Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress. Planta 247(6):1449–1463

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. Shangguan L et al (2020) Comparative study of DAM, Dof, and WRKY gene families in fourteen species and their expression in Vitis vinifera. 3Biotech 10(2):72

    Google Scholar 

  50. Sigoillot FD et al (2012) A bioinformatics method identifies prominent off-targeted transcripts in RNAi screens. Nat Methods 9(4):363

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Simmons CR (1994) The physiology and molecular biology of plant 1, 3-β-D-glucanases and 1, 3; 1, 4-β-D-glucanases. Crit Rev Plant Sci 13(4):325–387

    CAS  Google Scholar 

  52. Simpson C, Thomas C, Findlay K, Bayer E, Maule AJ (2009) An arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate Cell-to-cell trafficking. Plant Cell Online 21(2):581–594

    CAS  Article  Google Scholar 

  53. Stuetz AE, Wrodnigg TM (2011) Imino sugars and glycosyl hydrolases: historical context, current aspects, emerging trends Advances in carbohydrate chemistry and biochemistry, vol 66. Elsevier, New York, pp 187–298

    Google Scholar 

  54. Su H, Zhang S, Yin Y, Zhu D, Han L (2015) Genome-wide analysis of NAM-ATAF1, 2-CUC2 transcription factor family in Solanum lycopersicum. J Plant Biochem Biotechnol 24(2):176–183

    CAS  Article  Google Scholar 

  55. Temnykh S et al (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100(5):697–712

    CAS  Article  Google Scholar 

  56. Thomson KG, Thomas JE, Dietzgen RG (1998) Retrotransposon-like sequences integrated into the genome of pineapple. Ananas Comosus Plant Mol Biol 38(3):461–465

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. Velasco R et al (2010) The genome of the domesticated apple (Malus× domestica Borkh.). Nat Genet 42(10):833–839

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. Wang Y et al (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucl Acids Res 40(7):e49–e49

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Wang Z et al (2013) Molecular cloning and expression of five glutathione S-transferase (GST) genes from Banana (Musa acuminata L. AAA group, cv. Cavendish). Plant Cell Rep 32(9):1373–1380

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. Wang Z, Zhou J, Xu X, Perl A, Chen S, Ma H (2017) Adoption of table grape cultivars: an attribute preference study on Chinese grape growers. Sci Hortic 216:66–75

    Article  Google Scholar 

  61. Wong DC, Sweetman C, Drew DP, Ford CM (2013) VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine). BMC Genom 14(1):882

    Article  CAS  Google Scholar 

  62. Xie R et al (2015) The ARF, AUX/IAA and GH3 gene families in citrus: genome-wide identification and expression analysis during fruitlet drop from abscission zone A. Mol Genet Genom 290(6):2089–2105

    CAS  Article  Google Scholar 

  63. Yue J et al (2015) Kiwifruit Information Resource (KIR): a comparative platform for kiwifruit genomics. Database 2015:bav113

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. Zhang Q, Zhang X, Pettolino F, Zhou G, Li C (2016) Changes in cell wall polysaccharide composition, gene transcription and alternative splicing in germinating barley embryos. J Plant Physiol 191:127–139

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. Zhang Z et al (2018) Transcriptome profiles reveal the crucial roles of hormone and sugar in the bud dormancy of Prunus mume. Sci Rep 8(1):1–15

    Google Scholar 

Download references

Funding

This project was funded by the General Program of National Natural Science Foundation of China (31772283), Natural Science Foundation of Jiangsu Province (BK20201321), Jiangsu Planned Projects for Postdoctoral Research Funds (2020Z052), Jiangsu Agriculture Science and Technology Innovation Fund (CX(20)3016), and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Affiliations

Authors

Contributions

Conceived and designed the experiments: LFSG, JGF. Analyzed the data: LFSG, THL, XF, YHR, ZJL. RT-qPCR: XYL, MF. Wrote the paper: LFSG, THL, TP. Revised the paper: LFSG, TP. TP and TL conduct experimentation and drafting, LS, XF, Y R and XL retrieve and data analysis, ZL, MF and JF revised the manuscript and Technical input.

Corresponding author

Correspondence to Lingfei Shangguan.

Ethics declarations

Conflict of interest

All authors declared that there is no conflict of interest.

Ethics approval

Not Applicable.

Consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1662 kb)

Supplementary file2 (DOCX 217 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pervaiz, T., Liu, T., Fang, X. et al. Identification of GH17 gene family in Vitis vinifera and expression analysis of GH17 under various adversities. Physiol Mol Biol Plants 27, 1423–1436 (2021). https://doi.org/10.1007/s12298-021-01014-1

Download citation

Keywords

  • GH17 gene family
  • Vitis vinifera
  • Abiotic stress
  • Bud dormancy