Abstract
Plant–microbiome interactions are significant determinant for plant growth, fitness and productivity. Depending upon the specific habitat, plants' microbial communities are classified as the rhizo-, phyllo-, and endospheric regions. Understanding the plant microbiome interactions could provide an opportunity to develop strategies for sustainable agricultural practices. There is a necessity to decipher the complex structural and functional diversity within plant microbiomes to reveal its immense potential in agriculture. The plant microbiota harbors enormous microbial communities that defy analytical methodologies to study dynamics underlying plant microbiome interactions. Findings based on conventional approaches have ignored many beneficial microbial strains, which creates a serious gap in understanding the microbial communications along with the genetic adaptations, which favors their association with host plant. The new era of next generation sequencing techniques and modern cost-effective high-throughput molecular approaches can decipher microbial community composition and function. In this review, we have presented the overview of the various compartments of plants, approaches to allow the access to microbiome and factors that influence microbial community composition and function. Next, we summarize how plant microbiome interactions modulate host beneficial properties particularly nutrient acquisition and defense, along with future agricultural applications.
Similar content being viewed by others
References
Achouak W, Haichar FZ (2019) Stable isotope probing of microbiota structure and function in the plant rhizosphere. In: Dumont MG, García MH (eds) Stable isotope probing. Humana, New York, pp 233–243
Adeleke BS, Babalola OO (2020) The endosphere microbial communities, a great promise in agriculture. Int Microbiol. https://doi.org/10.1007/s10123-020-00140-2
Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:e1002352
Agrahari RK, Singh P, Koyama H, Panda SK (2020) Plant-microbe interactions for sustainable agriculture in the postgenomic era. Curr Genom 21:168–178
Andreote FD, Gumiere T, Durrer A (2014) Exploring interactions of plant microbiomes. Sci Agríc 71:528–539
Arif I, Batool M, Schenk PM (2020) Plant microbiome engineering: Expected benefits for improved crop growth and resilience. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2020.04.015
Averill C, Bhatnagar JM, Dietze MC, Pearse WD, Kivlin SN (2019) Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc Natl Acad Sci 116:23163–23168
Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS microbiology ecology 68(1):1–13
Berg M, Koskella B (2018) Nutrient-and dose-dependent microbiome-mediated protection against a plant pathogen. Curr Biol 28:2487–2492
Bharati AP, Kumar A, Kumar S, Maurya DK, Kumari S, Agarwal DK, Kumar SJ (2020) Role of biotechnology in the exploration of soil and plant microbiomes. In: Solanki MK, Kashyap PL, Kumari B (eds) Phytobiomes: current insights and future vistas. Springer, Singapore, pp 335–355
Bhatt P, Verma A, Verma S, Anwar M, Prasher P, Mudila H, Chen S (2020) Understanding phytomicrobiome: a potential reservoir for better crop management. Sustainability 12:5446
Bodenhausen N, Somerville V, Desiro A, Walser JC, Borghi L, van der Heijden MG, Schlaeppi K (2019) Petunia-and Arabidopsis-specific root microbiota responses to phosphate supplementation. Phytobiomes J 3:112–124
Bodor A, Bounedjoum N, Vincze GE, Kis ÁE, Laczi K, Bende G, Szilágyi Á, Kovács T, Perei K, Rákhely G (2020) Challenges of unculturable bacteria: environmental perspectives. Rev Environ Sci Biol Technol 19:l1-22
Bouffaud ML, Poirier MA, Muller D, Moënne-Loccoz Y (2014) Root microbiome relates to plant host evolution in maize and other Poaceae. Environ Microbial 16:2804–2814
Bressan M, Roncato MA, Bellvert F, Comte G, el ZaharHaichar F, Achouak W, Berge O (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3:1243
Bridier A, Piard JC, Pandin C, Labarthe S, Dubois-Brissonnet F, Briandet R (2017) Spatial organization plasticity as an adaptive driver of surface microbial communities. Front Microbial 8:1364
Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Ann Rev Plant Biol 64:807–838
Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA, Leach JE, Dangl JL (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15:e2001793
Cappelletti M, Perazzolli M, Antonielli L, Nesler A, Torboli E, Bianchedi PL, Pindo M, Puopolo G, Pertot I (2016) Leaf treatments with a protein-based resistance inducer partially modify phyllosphere microbial communities of grapevine. Front Plant Sci 7:1053
Carrión VJ, Cordovez V, Tyc O, Etalo DW, de Bruijn I, de Jager VC, Medema MH, Eberl L, Raaijmakers JM (2018) Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. ISME J 12:2307–2321
Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM (2015) Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol Plant Microbe Int 28:1049–1058
Castrillo G, Teixeira PJPL, Paredes SH, Law TF, de Lorenzo L, Feltcher ME, Finkel OM, Breakfield NW, Mieczkowski P, Jones CD, Paz-Ares J (2017) Root microbiota drive direct integration of phosphate stress and immunity. Nature 543:513–518
Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 4:669–678
Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions and emerging trends in microbial application. J Adv Res 19:29–37
Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS (2015) Seasonal community succession of the phyllosphere microbiome. Mol Plant Microbe Interact 28:274–285
da Silva FE, Peixoto RS, Rosado AS, de Carvalho BF, Tiedje JM, da Costa Rachid CTC (2018) The microbiome of Eucalyptus roots under different management conditions and its potential for biological nitrogen fixation. Microbial Ecol 75:183–191
Darlison J, Mogren L, Rosberg AK, Grudén M, Minet A, Liné C, Mieli M, Bengtsson T, Håkansson Å, Uhlig E, Becher PG (2019) Leaf mineral content govern microbial community structure in the phyllosphere of spinach (Spinacia oleracea) and rocket (Diplotaxis tenuifolia). Sci Total Environ 675:501–512
Dastogeer KM, Li H, Sivasithamparam K, Jones MG, Wylie SJ (2018) Host specificity of endophytic mycobiota of wild Nicotiana plants from arid regions of Northern Australia. Microbial Ecol 75:74–87
Dastogeer KM, Tumpa FH, Sultana A, Akter MA, Chakraborty A (2020) Plant microbiome—an account of the factors that shape community composition and diversity. Curr Plant Biol 23:100161
De Vries FT, Manning P, Tallowin JR, Mortimer SR, Pilgrim ES, Harrison KA, Hobbs PJ, Quirk H, Shipley B, Cornelissen JH, Kattge J (2012) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol Lett 15:1230–1239
del Carmen O-M, del Carmen R-G, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res 208:25–31
Dellagi A, Quillere I, Hirel B (2020) Beneficial soil-borne bacteria and fungi: a promising way to improve plant nitrogen acquisition. J Exp Bot 71:4469–4479
Dutta J, Bora U (2019) Rhizosphere microbiome and plant probiotics. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering. Elsevier, New York, pp 273–281
Fadiji AE, Babalola OO (2020) Metagenomics methods for the study of plant-associated microbial communities: a review. J Microbiol Methods 170:105860
Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MT (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci 115:E1157–E1165
Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, Teixeira PJPL, Dangl JL (2020) The plant microbiome: from ecology to reductionism and beyond. Ann Rev Microbiol 74:81–100
Goytain A, Ng T (2020) NanoString ncounter technology: high-throughput RNA validation. In: Li H, Elfman J (ed) Chimeric RNA. Humana, New York, pp 125–139
Gupta R, Singh A, Srivastava M, Shanker K, Pandey R (2018) Plant-microbe interactions endorse growth by uplifting microbial community structure of Bacopa monnieri rhizosphere under nematode stress. Microbiol Res 218:87–96
Hahn MW, Koll U, Schmidt J (2019) Isolation and cultivation of bacteria. In: Hurst CJ (ed) The structure and function of aquatic microbial communities. Springer, Cham, pp 313–351
Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320
Hein JW, Wolfe GV, Blee KA (2008) Comparison of rhizosphere bacterial communities in Arabidopsis thaliana mutants for systemic acquired resistance. Microbial Ecol 55:333–343
Herlihy JH, Long TA, McDowell JM (2020) Iron homeostasis and plant immune responses: recent insights and translational implications. J Biol Chem 120:13444–13457
Hestrin R, Hammer EC, Mueller CW, Lehmann J (2019) Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Comm Biol 2:1–9
Hu L, Robert CA, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Steinger T, Van Der Heijden MG, Schlaeppi K (2018) Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun 9:1–13
Huang XF, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92(4):267–275
Jacoby RP, Chen L, Schwier M, Koprivova A, Kopriva S (2020) Recent advances in the role of plant metabolites in shaping the root microbiome. F1000Res 9:151
Jongman M, Carmichael PC, Bill M (2020) Technological advances in phytopathogen detection and metagenome profiling techniques. Curr Microbiol 77:1–7
Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci 111:13715–13720
Kniskern JM, Traw MB, Bergelson J (2007) Salicylic acid and jasmonic acid signaling defense pathways reduce natural bacterial diversity on Arabidopsis thaliana. Mol Plant Microbe Int 20:1512–1522
Kwak MJ, Kong HG, Choi K, Kwon SK, Song JY, Lee J, Lee PA, Choi SY, Seo M, Lee HJ, Jung EJ (2018) Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol 36:1100–1109
Laforest-Lapointe I, Messier C, Kembel SW (2016) Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4:27
Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587
Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Del Rio TG, Jones CD, Tringe SG, Dangl JL (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864
Leff JW, Bardgett RD, Wilkinson A, Jackson BG, Pritchard WJ, Long JR, Oakley S, Mason KE, Ostle NJ, Johnson D, Baggs EM (2018) Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J 12:1794–1805
Levy A, Conway JM, Dangl JL, Woyke T (2018) Elucidating bacterial gene functions in the plant microbiome. Cell Host Microbe 24:475–485
Liu Y, Zhu A, Tan H, Cao L, Zhang R (2019) Engineering banana endosphere microbiome to improve Fusarium wilt resistance in banana. Microbiome 7:74
Liu H, Brettell LE, Singh B (2020) Linking the phyllosphere microbiome to plant health. Trends Plant Sci 25:841–844
Lu T, Ke M, Lavoie M, Jin Y, Fan X, Zhang Z, Fu Z, Sun L, Gillings M, Peñuelas J, Qian H (2018) Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6:1–12
Meyer JB, Song-Wilson Y, Foetzki A, Luginbühl C, Winzeler M, Kneubühler Y, Matasci C, Mascher-Frutschi F, Kalinina O, Boller T, Keel C (2013) Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi? PLoS ONE 8:e53825
Müller DB, Vogel C, Bai Y, Vorholt JA (2016) The plant microbiota: systems-level insights and perspectives. Ann Rev Gen 50:211–234
Naylor D, Sadler N, Bhattacharjee A, Graham EB, Anderton CR, McClure R, Lipton M, Hofmockel KS, Jansson JK (2020) Soil microbiomes under climate change and implications for carbon cycling. Ann Rev Environ Res 45:29–59
Parasuraman P, Pattnaik S, Busi S (2019) Phyllosphere microbiome: functional importance in sustainable agriculture. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering. Elsevier, London, pp 135–148
Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610
Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Edward SB, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci 110:6548–6553
Pratama AA, Terpstra J, de Oliveria ALM, Salles JF (2020) The role of rhizosphere bacteriophages in plant health. Trends Microbiol 28:709–718
Ravanbakhsh M, Sasidharan R, Voesenek LA, Kowalchuk GA, Jousset A (2018) Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome 6:52
Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Ann Rev Phytopathol 53:403–424
Remus-Emsermann MN, Schlechter RO (2018) Phyllosphere microbiology: at the interface between microbial individuals and the plant host. New Phytol 218:1327–1333
Risely A (2020) Applying the core microbiome to understand host–microbe systems. J Anim Ecol 89:1549–1558
Samad A, Trognitz F, Compant S, Antonielli L, Sessitsch A (2017) Shared and host-specific microbiome diversity and functioning of grapevine and accompanying weed plants. Environ Microbiol 19:1407–1424
Santhanam R, Menezes RC, Grabe V, LiD BIT, Groten K (2019) A suite of complementary biocontrol traits allows a native consortium of root-associated bacteria to protect their host plant from a fungal sudden-wilt disease. Mol Ecol 28:1154–1169
Santoyo G, Moreno-Hagelsieb G, del Carmen O-M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99
Sasse J, Martinoia E, Northen T (2017) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41
Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant Microbe Interact 28:212–217
Schlaeppi K, Dombrowski N, Oter RG, Loren V, van Themaat E, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci 111:585–592
Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T (2017) Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107:1284–1297
Singh SP, Gaur R (2017) Endophytic Streptomyces spp. underscore induction of defense regulatory genes and confers resistance against Sclerotium rolfsii in chickpea. Biol Control 104:44–56
Singh A, Kumar M, Verma S, Choudhary P, Chakdar H (2020) Plant microbiome: trends and prospects for sustainable agriculture. In: Varma A, Tripathi S, Prasad R (eds) Plant microbe symbiosis. Springer, Cham, pp 129–151
Sneck ME, Rudgers JA, Young CA, Miller TE (2019) Does host outcrossing disrupt compatibility with heritable symbionts? Oikos 128:892–903
Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, Van Verk MC, Berendsen RL, Bakker PA, Feussner I, Pieterse CM (2018) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc Natl Acad Sci 115:5213–5222
Tao K, Kelly S, Radutoiu S (2019) Microbial associations enabling nitrogen acquisition in plants. Curr Opin Microbiol 49:83–89
Teixeira PJP, Colaianni NR, Fitzpatrick CR, Dangl JL (2019) Beyond pathogens: microbiota interactions with the plant immune system. Curr Opin Microbiol 49:7–17
Thapa S, Prasanna R (2018) Prospecting the characteristics and significance of the phyllosphere microbiome. Ann Microbial 68:229–245
Trivedi P, Delgado-Baquerizo M, Trivedi C, Hamonts K, Anderson IC, Singh BK (2017) Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems. Soil Biol Biochem 111:10–14
Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK (2020) Plant–microbiome interactions: from community assembly to plant health. Natl Rev Microbiol 18:1–15
Turner TR, James EK, Poole PS (2013) The plant microbiome. Gen Biol 14:209
Vannier N, Agler M, Hacquard S (2019) Microbiota-mediated disease resistance in plants. PLoS Pathog 15:e1007740
Verma SK, Gond SK, Mishra A, Sharma VK, Kumar J, Singh DK, Kumar A, Kharwar RN (2017) Fungal endophytes representing diverse habitats and their role in plant protection. In: Satyanarayana T, Deshmukh SK, Johri BN (eds) Developments in fungal biology and applied mycology. Springer, Singapore, pp 135–157
Voges MJ, Bai Y, Schulze-Lefert P, Sattely ES (2019) Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc Natl Acad Sci 116:12558–12565
Wei Z, Gu Y, Friman VP, Kowalchuk GA, Xu Y, Shen Q, Jousset A (2019) Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv 5:eaaw0759
Wolfe BE (2018) Using cultivated microbial communities to dissect microbiome assembly: challenges, limitations, and the path ahead. Msystems 3:e00161-e217
Yadav AN, Singh J, Rastegari AA, Yadav N (eds) (2020) Plant microbiomes for sustainable agriculture. Springer, Berlin
Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G, Taghavi S, van der Lelie D (2015) The soil microbiome influences grapevine-associated microbiota. MBio 6:e02527-e2614
Zhang J, Liu YX, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X, Hui J (2019) NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol 37:676–684
Zhong Y, Yang Y, Liu P, Xu R, Rensing C, Fu X, Liao H (2019) Genotype and rhizobium inoculation modulate the assembly of soybean rhizobacterial communities. Plant Cell Environ 42:2028–2044
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All authors declare that there exists no conflict of interest among them.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Gupta, R., Anand, G., Gaur, R. et al. Plant–microbiome interactions for sustainable agriculture: a review. Physiol Mol Biol Plants 27, 165–179 (2021). https://doi.org/10.1007/s12298-021-00927-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12298-021-00927-1