Skip to main content

Rhizomicrobiomics of Caesalpinia bonducella, a wonder plant for PCOS treatment

Abstract

Plant and rhizobacterial interactions contribute partly to a plant’s medicinal properties and are well studied through metagenomics. In this study, 16S rDNA, 18S rDNA, and ITS meta-sequencing were performed using the genomic DNA obtained from the rhizosphere of Caesalpinia bonducella—a medicinal shrub widely used to treat polycystic ovary syndrome (PCOS). Of the 665 Operational Taxonomic Units (OTUs) obtained from 16S rDNA sequencing, 23.9% comprised of microbes that increase the therapeutic value of plants (Bacillus, Paenibacillus), 6.4% belonged to stress and drought tolerant microbes (Pseudomonas, Rhizobium, Serratia), 8% belonged to plant-growth promoting rhizobacteria—predominantly Proteobacteria, and Firmicutes and the remaining were the microbes performing various other functions. Alpha diversity indexing by GAIA-metagenomics tool revealed the presence of a highly diverse group of microbes in the rhizosphere of C. bonducella; Chao.1 index (665), Shannon Weiner index (3.53), Simpson index (0.83) and Fisher index (106.13). The highly diverse microbes lingering around the roots of C. bonducella could possibly be due to a strong symbiotic association with the plant; root exudates nourish the microbes and the microbes in turn enrich the medicinal value of the plant.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ahn IP, Lee SW, Kim MG, Park SR, Hwang DJ, Bae SC (2011) Priming by rhizobacterium protects tomato plants from biotrophic and necrotrophic pathogen infections through multiple defense mechanisms. Mol Cells 32:7–14

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Akinsanya MA, Goh JK, Lim SP, Ting ASY (2015) Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology. Genomics Data 6:159–163

    PubMed  PubMed Central  Google Scholar 

  3. Alzubaidy H, Essack M, Malas TB, Bokhari A, Motwalli O, Kamanu FK, Jamhor SA, Mokhtar NA, Antunes A, Simões MF, Alam I, Bougouffa S, Lafi FF, Bajic VB, Archer JA (2016) Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea. Gene 576:626–636

    CAS  PubMed  Google Scholar 

  4. Banchio E, Bogino PC, Zygadlo J, Giordano W (2008) Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochem Syst Ecol 36:766–771

    CAS  Google Scholar 

  5. Banchio E, Xie X, Zhang H, Pare PW (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem 57:653–657

    CAS  PubMed  Google Scholar 

  6. Barry JA, Azizia MM, Hardiman PJ (2014) Risk of endometrial, ovarian and breast cancer in women with polycystic ovary syndrome: A systematic review and meta-analysis. Hum Reprod Update 20:748–758

    PubMed  PubMed Central  Google Scholar 

  7. Barton LL, Fauque GD (2009) Biochemistry, Physiology and Biotechnology of Sulfate-Reducing Bacteria. Adv Appl Microbiol 68:41–98

    CAS  PubMed  Google Scholar 

  8. Berg G (2009) Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl Microbiol and Biotechnol 84:11–18

    CAS  Google Scholar 

  9. Bharti N, Yadav D, Barnawal D, Maji D, Kalra A (2013) Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World J Microbiol Biotechnol 29:379–387

    CAS  PubMed  Google Scholar 

  10. Castañeda LE, Barbosa O (2017) Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ 5:e3098

    PubMed  PubMed Central  Google Scholar 

  11. Da Silveira ÉL, Pereira RM, Scaquitto DC, Pedrinho EA, Val-Moraes SP, Wickert E, Carareto-Alves L, Lemos EG (2006) Bacterial diversity of soil under eucalyptus assessed by 16S rDNA sequencing analysis. Pesqui Agropecu Bras 41:1507–1516

    Google Scholar 

  12. Farag MA, Zhang H, Ryu CM (2013) Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J Chem Ecol 39:1007–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gaines WL, Harrod RJ, Lehmkuhl JF (1999) Monitoring biodiversity: Quantification and interpretation. General Technical Reports of the US Department of Agriculture Forest Service 443: 1–27

  14. Hashem A, Tabassum B, Fathi Abd Allah E (2019) Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J of Biol Sci 26:1291–1297

    CAS  Google Scholar 

  15. Huang XF, Zhou D, Lapsansky ER, Reardon KF, Guo J, Andales MJ, Manter DK (2017) Mitsuaria sp. and Burkholderia sp. from Arabidopsis rhizosphere enhance drought tolerance in Arabidopsis thaliana and maize (Zea mays L.). Plant Soil 419:523–539

    CAS  Google Scholar 

  16. Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci 8:1617

    PubMed  PubMed Central  Google Scholar 

  17. Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf B Biointerfaces 60:7–11

    CAS  PubMed  Google Scholar 

  18. Khan AL, Asaf S, Abed RMM, Ning Chai Y, Al-Rawahi AN, Mohanta TK, Al-Rawahi A, Schachtman DP, Al-Harrasi A (2020) Rhizosphere microbiome of arid land medicinal plants and extra cellular enzymes contribute to their abundance. Microorganisms 8:213

    CAS  PubMed Central  Google Scholar 

  19. Khan N, Bano A (2019) Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLoS ONE 14:e0222302

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim MJ, Radhakrishnan R, Kang SM, You YH, Jeong EJ, Kim JG, Lee IJ (2017) Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity. Physiol Mol Biol Plants 23:571–580

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Köberl M, Schmidt R, Ramadan EM, Bauer R, Berg G (2013) The microbiome of medicinal plants: Diversity and importance for plant growth, quality, and health. Front Microbiol 4:400

    PubMed  PubMed Central  Google Scholar 

  22. Kumar A, Prakash A, Johri BN (2011) Bacillus as PGPR in crop ecosystem. Bacteria in Agrobiology: Crop Ecosystems 10:37–59

    CAS  Google Scholar 

  23. Kusari S, Zühlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7

    CAS  PubMed  Google Scholar 

  24. Li Y, Jiang B, Zhang T, Mu W, Liu J (2008) Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chem 106:444–450

    CAS  Google Scholar 

  25. Lilaram NR (2013) Effect of Caesalpinia bonducella seed extract on histoarchitecture of some vital organs and clinical chemistry in female albino rats. J King Saud Univ - Sci 25:1–6

    Google Scholar 

  26. Mitter B, Brader G, Afzal M, Compant S, Naveed M (2013) Advances in elucidating beneficial interactions between plants, soil, and bacteria. Adv Agron 121:381–445

    CAS  Google Scholar 

  27. Mohana Kumara P, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, Vasudeva R, Santhoshkumar TR, Spiteller M, Uma shaanker R, (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Int J Gen Mol Microbiol 101:323–329

    Google Scholar 

  28. Montaña JS, Jiménez DJ, Hernández M, Ángel T, Baena S (2012) Taxonomic and functional assignment of cloned sequences from high Andean forest soil metagenome. Int J Gen Mol Microbiol 101:205–215

    Google Scholar 

  29. Murugesan BM, Muralidharan P, Hari R (2020) Effect of ethanolic seed extract of Caesalpinia bonducella on hormones in mifepristone induced PCOS rats. J Appl Pharm Sci 10:72–76

    CAS  Google Scholar 

  30. O’Keeffe J (2004) Measuring Biological Diversity. African J Aquat Sci 29:285–286

    Google Scholar 

  31. Pascoe KO, Burke BA, Chan WR (1986) Caesalpin F: A New Furanoditerpene from Caesalpinia bonducella. J Nat Prod 49:913–915

    CAS  Google Scholar 

  32. Paytuví A, Battista E, Scippacercola F, Cigliano RA, Sanseverino W (2019) GAIA: an integrated metagenomics suite. bioRxiv 804690

  33. Prasad G, Trimurtulu G, Reddy K, Naidu M (2010) Analytical study of Kuberaksha/Kantaki Karanja Patra Churna [Caesalpinia Bonduc (L.) Roxb. Leaf powder]. AYU (Int Quart J Res Ayur) 31:251–254

    Google Scholar 

  34. Pravisya P, Jayaram KM, Yusuf A (2019) Biotic priming with Pseudomonas fluorescens induce drought stress tolerance in Abelmoschus esculentus (L.) Moench (Okra). Physiol Mol Biol Plants 25:101–112

    CAS  PubMed  Google Scholar 

  35. Qi XJ, Wang ES, Chen X (2013) Molecular characterization of bacterial population in the Rumex patientia rhizosphere soil of Jilin, China. Res J Biotechnol 8:64–71

    CAS  Google Scholar 

  36. Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna China. Appl Environ Microbiol 75:6176–6186

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rajkumar M, Bruno LB, Banu JR (2017) Alleviation of environmental stress in plants: the role of beneficial Pseudomonas spp. Crit Rev Environ Sci Tech 47:372–407

    Google Scholar 

  38. Salunke KR, Ahmed RN, Lilaram SRM (2011) Effect of graded doses of Caesalpinia bonducella seed extract on ovary and uterus in albino rats. J Basic Clin Physiol Pharmacol 22:49–53

    PubMed  Google Scholar 

  39. Shah JA, Pandit AK (2013) Application of diversity indices to crustacean community of Wular Lake, Kashmir Himalaya. Inter J Biodiv Cons 5:311–316

    Google Scholar 

  40. Shi JY, Yuan XF, Lin HR, Yang YQ, Li ZY (2011) Differences in soil properties and bacterial communities between the rhizosphere and bulk soil and among different production areas of the medicinal plant Fritillaria thunbergii. Int J Mol Sci 12:3770–3785

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Srivastava R, Srivastava AK, Ramteke PW, Gupta VK, Srivastava AK (2020) Metagenome dataset of wheat rhizosphere from Ghazipur region of Eastern Uttar Pradesh. Data Brief 28:105094

    PubMed  PubMed Central  Google Scholar 

  42. Wahid OAA, Mehana TA (2000) Impact of phosphate-solubilizing fungi on the yield and phosphorus-uptake by wheat and faba bean plants. Microbiol Res 155:221–227

    CAS  PubMed  Google Scholar 

  43. War Nongkhla FM, Joshi SR (2014) Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India. Rev Biol Trop 62:1295–1308

    Google Scholar 

Download references

Acknowledgements

Authors thank Ms. Abiramavalli M, Senior research fellow, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur for her assistance in manuscript preparation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Usha Balasundaram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramadurai, S., Balasundaram, U. Rhizomicrobiomics of Caesalpinia bonducella, a wonder plant for PCOS treatment. Physiol Mol Biol Plants 26, 2453–2463 (2020). https://doi.org/10.1007/s12298-020-00915-x

Download citation

Keywords

  • Caesalpinia bonducella
  • Microbial diversity
  • Oxford nanopore technology (ONT)
  • Rhizosphere
  • 16S rRNA