Effect of foliar applied triacontanol on wheat (Triticum aestivum L.) under arsenic stress: a study of changes in growth, yield and photosynthetic characteristics

Abstract

In this study, changes in growth, yield and photosynthetic characteristics were assessed by foliar application of triacontanol (TRIA) in wheat (Triticum aestivum L.) varieties Anaj-2017, Ujala-2016 and AARI-2011 under arsenic (As) stress. Seeds of all three wheat varieties were sown in sand filled plastic pots. The experiment was conducted in a completely randomized design (CRD) with three replicates. All the plants were irrigated with full strength Hoagland’s nutrient solution till the termination of experiment. Plants were applied with three levels of sodium arsenite (NaAsO2) i.e. 0 ppm, 50 ppm and 100 ppm and two levels of foliar treatment of triacontanol i.e. control (no spray), and TRIA 1 µM applied. After 16 week of germination, data of all photosynthetic characteristics was collected, while yield was taken at maturity. Arsenic (50 ppm and 100 ppm) stress exerted significantly adverse effects on various growth and photosynthetic parameters i.e. shoot fresh and dry weights, total leaf area per plant, total grain yield per plant, 100 grain weight, number of seeds per plant, chlorophyll (chl.) pigments, chl. a, b chl. a/b ratio, flavonoids, anthocyanin contents, rate of photosynthesis (A), transpiration rate (E), internal CO2 concentration (Ci), water use efficiency (A/E), and stomatal conductance (gs). Foliar application of TRIA significantly increased growth and yield attributes, chlorophyll b, internal CO2 concentration, stomatal conductance, rate of photosynthesis, flavonoids and anthocyanin contents in all wheat varieties. Moreover, the results also indicated that 1 µM TRIA proved to be effective in reducing the adverse effects of arsenic stress on all three wheat varieties. Of three wheat varieties, AARI-2011 is more sensitive to arsenic stress and Anaj-2017 proved to be more tolerant against arsenic stress. However, foliar application of TRIA proves to be more effective for var. AARI-2011.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aftab T, Khan MMA, Idrees M, Naeem M, Singh M, Ram M (2010) Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annua L. by triacontanol and gibberellic acid application. J Plan Inter 5(4):273–281

    CAS  Google Scholar 

  2. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    CAS  Article  Google Scholar 

  4. Chaudhry IS, Malik S, Ashraf M (2006) Rural poverty in Pakistan: some related concepts, issues and empirical analysis. Pakistan Econ and Soci Rev 59:259–276

    Google Scholar 

  5. Chen X, Yuan H, Chen R, Zhu L, He G (2003) Biochemical and photochemical changes in response to triacontanol in rice (Oryza sativa L.). Plant Grow Regul 40(3):249–256

    CAS  Article  Google Scholar 

  6. Giridhar P, Rajasekaran T, Ravishankar GA (2005) Improvement of growth and root specific flavour compound 2-hydroxy-4-methoxy benzaldehyde of micropropagated plants of Decalepishamiltonii Wight &Arn., under triacontanol treatment. SciHort 106(2):228–236

    CAS  Google Scholar 

  7. Han B, Runnells T, Zimbron J, Wickramasinghe R (2002) Arsenic removal from drinking water by flocculation and microfiltration. Desalination 145(1–3):293–298

    CAS  Article  Google Scholar 

  8. Karadeniz F, Burdurlu HS, Koca N, Soyer Y (2005) Antioxidant activity of selected fruits and vegetables grown in Turkey. Turkish J Agri and Forest 29(4):297–303

    CAS  Google Scholar 

  9. Karam EA, Keramat B, Asrar Z, Mozafari H (2016) Triacontanol-induced changes in growth, oxidative defense system in Coriander (Coriandrum sativum L.) under arsenic toxicity. Ind J Plant Physiol 21(2):137–142

    Article  CAS  Google Scholar 

  10. Karam EA, Keramat B, Asrar Z, Mozafari H (2017) Study of interaction effect between triacontanol and nitric oxide on alleviating of oxidative stress arsenic toxicity in coriander seedlings. Plant Inter 12(1):14–20

    CAS  Google Scholar 

  11. Khan MMA, Mujibur-Rahman M, Naeem M, Mohammad F, Siddiqui MH, Khan MN (2006) Triacontanol–induced changes in growth yield and quality of tomato (Lycopersicon Esculentum Mill.). EJEAFChe 5(4):1492–1499

    CAS  Google Scholar 

  12. Kiliç NK, Duygu E, Dönmez G (2010) Triacontanol hormone stimulates population, growth and Brilliant Blue R dye removal by common duckweed from culture media. J Hazardous Mat 182(1–3):525–530

    Article  CAS  Google Scholar 

  13. Kılıç NK, Karatay SE, Duygu E, Dönmez G (2011) Potential of Gonium spp. in synthetic reactive dye removal, possible role of laccases and stimulation by triacontanol hormone. Water Air Soil Pollut 222(1–4):297–303

    Article  CAS  Google Scholar 

  14. Krishnan RR, Kumari BD (2008) Effect of N-triacontanol on the growth of salt stressed soybean plants. J Bio Sci 19(2):53–62

    Google Scholar 

  15. Kumaravelu G, Livingstone VD, Ramanujam MP (2000) Triacontanol-induced changes in the growth, photosynthetic pigments, cell metabolites, flowering and yield of green gram. Biol Plant 43(2):287–290

    CAS  Article  Google Scholar 

  16. Li CX, Feng SL, Yun S, Jiang LN, Lu XY, Hou XL (2007) Effects of arsenic on seed germination and physiological activities of wheat seedlings. J Environ Sci 19(6):725–732

    CAS  Article  Google Scholar 

  17. Liu Y, Zhang D, Lu G, Ma WY (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recogn 40(1):262–282

    Article  Google Scholar 

  18. Malabadi RB, Nataraja K (2007) Influence of triacontanol on somatic embryogenesis of Pinus roxburghiiSarg. Baltic Fores 13(1):39–44

    Google Scholar 

  19. Malabadi RB, Mulgund GS, Nataraja K (2005) Effect of triacontanol on the micropropagation of Costusspeciosus (Koen.)Sm. using rhizome thin sections. Vitro Cellular Develop Bio-Plant 41(2):129–132

    CAS  Article  Google Scholar 

  20. Mamat ASB, Fontenot JF, Newsom DW (1983) The effects of triacontanol on the growth and development of Tabasco pepper. Hort Sci 56:9999

    Google Scholar 

  21. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235

    CAS  PubMed  Article  Google Scholar 

  22. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154(1):29–43

    CAS  Article  Google Scholar 

  23. Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol Environ Stud 15(4):658

    Google Scholar 

  24. Misra A, Srivastava NK (1991) Effect of the triacontanol formulation ‘Miraculan’on photosynthesis, growth, nutrient uptake, and essential oil yield of Lemongrass (Cymbopogonflexuosus) Steud. Watts. Plant Growth Reg 10(1):57–63

    CAS  Article  Google Scholar 

  25. Müller M, Anke M (1994) Distribution of cadmium in the food chain (soil-plant-human) of a cadmium exposed area and the health risks of the general population. Sci Total Envion 156(2):151–158

    Article  Google Scholar 

  26. Muthuchelian K, Murugan C, Harigovindan R, Nedunchezhian N, Premkumar A, Kulandaivelu G (1996) Ameliorating effect of triacontanol on salt stressed Erythrina variegata seedlings. Changes in composition and activities of chloroplasts. Biol Plant 38(2):245

    CAS  Article  Google Scholar 

  27. Naeem M, Khan MMA, Siddiqui MH (2009) Triacontanol stimulates nitrogen-fixation, enzyme activities, photosynthesis, crop productivity and quality of hyacinth bean (Lablab purpureus L.). SciHort 121(4):389–396

    CAS  Google Scholar 

  28. Naeem M, Khan MMA, Idrees M, Aftab T (2011a) Triacontanol-mediated regulation of growth and other physiological attributes active constituents and yield of Mentha arvensis L. Plant Growth Regul 65(1):195–206

    CAS  Article  Google Scholar 

  29. Naeem MMMA, Khan MMA, Idrees M, Aftab T (2011b) Triacontanol-mediated regulation of growth and other physiological attributes, active constituents and yield of Menthaarvensis L. Plant Grow Reg 65(1):195–206

    CAS  Article  Google Scholar 

  30. Nriagu JO (2002) Arsenic poisoning through the ages. Environ Chem Arsenic 1:1–26

    Google Scholar 

  31. Parimalan R, Giridhar P, Gururaj HB, Ravishankar GA (2009) Micropropagation of Bixaorellanausing phytohormones and triacontanol. Biol Plant 53(2):347–350

    CAS  Article  Google Scholar 

  32. Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Lagudah E (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322(5898):101–104

    CAS  PubMed  Article  Google Scholar 

  33. Perveen S, Shahbaz M, Ashraf M (2010) Regulation in gas exchange and quantum yield of photosystem II (PSII) in salt-stressed and non-stressed wheat plants raised from seed treated with triacontanol. Pak J Bot 42(5):3073–3081

    CAS  Google Scholar 

  34. Perveen S, Shahbaz M, Ashraf M (2011) Modulation in activities of antioxidant enzymes in salt stressed and non-stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol. Pak J Bot 43(5):2463–2468

    CAS  Google Scholar 

  35. Perveen S, Shahbaz M, Ashraf M (2014) Triacontanol-induced changes in growth, yield, leaf water relations, oxidative defense system, minerals, and some key osmoprotectants in Triticum aestivum L. under saline conditions. Turkish J Bot 38(5):896–913

    Article  Google Scholar 

  36. Ramanarayan K, Bhat A, Shripathi V, Swamy GS, Rao KS (2000) Triacontanol inhibits both enzymatic and nonenzymatic lipid peroxidation. Phytochem 55(1):59–66

    CAS  Article  Google Scholar 

  37. Reddy BO, Giridhar P, Ravishankar GA (2002) The effect of triacontanol on micropropagation of Capsicum frutescens and Decalepishamiltonii W & A. Plant Cell, Tissue Organ Cult 71(3):253–258

    Article  Google Scholar 

  38. Ries S (1991) Triacontanol and its second messenger 9-β-L (+)-adenosine as plant growth substances. Plant Physiol 95(4):986–989

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Ries SK, Stutte CA (1985) Regulation of plant growth with triacontanol. CritRev Plant Sci 2(3):239–285

    CAS  Article  Google Scholar 

  40. Ries SK, Wert V, Sweeley CC, Leavitt RA (1977) Triacontanol: a new naturally occurring plant growth regulator. Science 195(4284):1339–1341

    CAS  PubMed  Article  Google Scholar 

  41. Seth CS, Chaturvedi PK, Misra V (2007) Toxic effect of arsenate and cadmium alone and in combination on giant duckweed (Spirodela polyrrhiza L.) in response to its accumulation. Environ Toxi Int J 22(6):539–549

    CAS  Article  Google Scholar 

  42. Shahbaz M, Noreen N, Perveen S (2013) Triacontanol modulates photosynthesis and osmoprotectants in canola (Brassica napus L.) under saline stress. J Plant Interact 8(4):350–359

    CAS  Article  Google Scholar 

  43. Shi T, Ma J, Wu F, Ju T, Gong Y, Zhang Y, Shi H (2019) Mass balance-based inventory of heavy metals inputs to and outputs from agricultural soils in Zhejiang Province, China. Sci Total Environ 649:1269–1280

    CAS  PubMed  Article  Google Scholar 

  44. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Archives of Toxic 87(7):1157–1180

    CAS  Article  Google Scholar 

  45. Srivastava NK, Sharma S (1990) Effect of triacontanol on photosynthesis, alkaloid content and growth in opium poppy (Papaver somniferum L.). Plant Growth Reg 9(1):65–71

    CAS  Article  Google Scholar 

  46. Taiz L, Zeiger E (2006) Fisiología vegetal. Publicaciones de la UniversitatJaume I, DL, Castelló de la Plana, p 258

    Google Scholar 

  47. Ullah SM (1998) Arsenic contamination of groundwater and irrigated soils of Bangladesh. In International conference on arsenic pollution of groundwater in Bangladesh: causes, effects and remedies, 1998. Dhaka Community Hospital, Dhaka

  48. Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Tech 41(19):6854–6859

    CAS  Article  Google Scholar 

  49. Zhang W, Cai Y, Tu C, Ma LQ (2002) Arsenic speciation and distribution in an arsenic hyper accumulating plant. Science al Env 300(1–3):167–177

    CAS  Google Scholar 

  50. Zhu YG, Williams PN, Meharg AA (2008) Exposure to inorganic arsenic from rice: a global health issue? Environ Poll 154(2):169–171

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shagufta Perveen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, H.M.M., Perveen, S. Effect of foliar applied triacontanol on wheat (Triticum aestivum L.) under arsenic stress: a study of changes in growth, yield and photosynthetic characteristics. Physiol Mol Biol Plants 26, 1215–1224 (2020). https://doi.org/10.1007/s12298-020-00831-0

Download citation

Keywords

  • Chlorophyll
  • Gas exchange
  • Growth
  • Grain yield
  • Photosynthesis