Skip to main content

Effect of salt stress on in vitro organogenesis from nodal explant of Limnophila aromatica (Lamk.) Merr. and Bacopa monnieri (L.) Wettst. and their physio-morphological and biochemical responses

Abstract

Salinity is one of the most severe abiotic stress factors that limit crop productivity by affecting the growth of plants. Therefore, it is significant to know the responses of plants against salt stress. In this study, the callus formation capabilities of nodal explants of Limnophila aromatica (Lamk.) Merr. and Bacopa monnieri (L.) Wettst. incubated under different NaCl concentrations (0–100 mM) in in vitro culture conditions were investigated and also the effect of NaCl on the release of regenerated shoots from these calluses was examined. Furthermore, the plants under NaCI stress were evaluated physiologically and biochemically. Callus formation percentages and callus intensities from the nodal explants decreased with increasing NaCl concentrations. In addition, yellowing, browning and even deaths were observed in calluses under salt toxicity. The callus was taken into the subculture, and the increased NaCl concentration in both plant species adversely affected the regeneration ability of the shoots. The number of shoots per callus for L. aromatica and B. monnieri was 6.72–17.49 and 7.42–15.38, respectively. The length of shoots in L. aromatica was between 0.95 and 1.65 cm, and in B. monnieri between 1.17 and 1.81 cm. The lowest number of shoots per callus and the shoot lengths were found in medium containing 100 mM NaCl. Moreover, photosynthetic pigmentation, lipid peroxidation, protein content, and proline content was damaged with increased salinity compared to the control group. This comprehensive study in tissue culture conditions can a be potential contributor to the literature and can help other studies to be carried out in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abogadallah GM (2010) Insights into the significance of antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ábrahám E, Rigó G, Székely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372

    Article  Google Scholar 

  3. Agır SU, Kutbay HG, Surmen B, Elmas E (2017) The effects of erosion and accretion on plant communities in coastal dunes in north of Turkey. Rend Fis Acc Lincei 28:203–224

    Article  Google Scholar 

  4. Aguiar S, Borowski T (2013) Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res 16(4):313–326

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ahire ML, Laxmi S, Walunj PR, Kavi Kishor PB, Nikam TD (2014) Effect of potassium chloride and calcium chloride induced stress on in vitro cultures of Bacopa monnieri (L.) Pennell and accumulation of medicinally important bacoside A. J Plant Biochem Biotechnol 23:366–378

    Article  CAS  Google Scholar 

  6. Ahmad R, Hussain S, Anjum MA, Khalid MF, Saqib M, Zakir I, Hassan A, Fahad S, Ahmad S (2019) Oxidative stress and antioxidant defense mechanisms in plants under salt stress. In: Hasanuzzaman M, Hakeem K, Nahar K, Alharby H (eds) Plant abiotic stress tolerance. Springer, Cham

    Google Scholar 

  7. Ali G, Srivastava PS, Iqbal M (1999) Proline accumulation, protein pattern and photosynthesis in Bacopa monniera regenerants grown under NaCI stress. Biol Plant 42:89–95

    Article  CAS  Google Scholar 

  8. Ashraf MY, Bhatti AS (2000) Effect of salinity on growth and chlorophyll content of rice. Pak J Sci Ind Res 43:130–131

    Google Scholar 

  9. Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  10. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stres studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  11. Benderradji L, Brini F, Kellou K, Ykhlef N, Djekoun A, Masmoudi K, Bouzerzour H (2012) Callus induction, proliferation, and plantlets regeneration of two bread wheat (Triticum aestivum L.) genotypes under saline and heat stress conditions. ISRN Agron. Article ID 367851

  12. Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brahmachari G (2014) Limnophila (Scrophulariaceae): chemical and pharmaceutical aspects-an update. Open Nat Prod J 7:1–14

    Google Scholar 

  14. Bui ML, Grayer RJ, Veitch NC, Kite GC, Tran H, Nguyen QCK (2004) Uncommon 8-oxygenated flavonoids from Limnophila aromatica (Scrophulariaceae). Biochem Syst Ecol 32:943–947

    Article  CAS  Google Scholar 

  15. Bulle M, Yarra R, Abbagani S (2016) Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene. Mol Breed 36:36

    Article  CAS  Google Scholar 

  16. Burssens S, Himanen K, Cotte BV, Beeckman T, Montagu MV, Inze D, Verbruggen N (2000) Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta 211:632–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Büyük İ, Soydam-Aydın S, Aras S (2012) Bitkilerin stres koşullarına verdiği moleküler cevaplar. Türk Hijyen ve Deneysel Biyoloji 69:97–110

    Google Scholar 

  18. Calzone A, Podda A, Lorenzini G, Maserti BE, Carrari E, Deleanu E, Hoshika Y, Haworth M, Nali C, Badea O, Pellegrini E, Fares S, Paoletti E (2019) Cross-talk between physiological and biochemical adjustments by Punica granatum cv. Dente di cavallo mitigates the effects of salinity and ozone stress. Sci Total Environ 656:589–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  20. Cominelli E, Conti L, Tonelli C, Galbiati M (2013) Challenges and perspectives to improve crop drought and salinity tolerance. New Biotechnol 30:355–361

    Article  CAS  Google Scholar 

  21. Delaunay AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  Google Scholar 

  22. Devendra SP, Preeti B, Santanu B, Gajanan D, Rupesh D (2018) Brahmi (Bacopa monnieri) as functional food ingredient in food processing industry. J Pharmacogn Phytochem 7:189–194

    CAS  Google Scholar 

  23. Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, Ju YH (2014) Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal 22:296–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dogan M (2017) Multiple shoot regeneration from shoot tip and nodal explants of Rotala rotundifolia (Buch-Ham. ex Roxb) Koehne. Ant J Bot 1:4–8

    Google Scholar 

  25. Dogan M, Karatas M, Aasim M (2015) An efficient in vitro plantlet regeneration of Ceratophyllum demersum L., an important medicinal aquatic plant. Fresenius Environ Bull 24:3499–3504

    CAS  Google Scholar 

  26. Dogan M, Karatas M, Aasim M (2018) Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: a laboratory study. Ecotoxicol Environ Safe 148:431–440

    Article  CAS  Google Scholar 

  27. Dubey V (2002) Screening of some extracts of medicinal plants for antimicrobial activity. J Mycol Plant Pathol 32:266–267

    Google Scholar 

  28. El-Esawi MA, Alaraidh IA, Alsahli AA, Alamri SA, Ali HM, Alayafi AA (2018) Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiol Biochem 132:375–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Emsen B, Dogan M (2018) Evaluation of antioxidant activity of in vitro propagated medicinal Ceratophyllum demersum L. extracts. Acta Sci Pol-Hortorum 17:23–33

    Article  Google Scholar 

  30. Esteban R, Barrutia O, Artetxe U, Fernández-Marín B, Hernández A, García-Plazaola JI (2015) Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach. New Phytol 206:268–280

    Article  CAS  Google Scholar 

  31. Estévez M (2015) Oxidative damage to poultry: from farm to fork. Poult Sci 94:1368–1378

    Article  CAS  Google Scholar 

  32. Gao YL, Cui YJ, Long RC, Sun Y, Zhang TJ, Yang QC, Kang JM (2019) Salt-stress induced proteomic changes of two contrasting alfalfa cultivars during germination stage. J Sci Food Agric 99:1384–1396

    Article  CAS  Google Scholar 

  33. Gengmao Z, Quanmei S, Yu H, Shihui L, Changhai W (2014) The physiological and biochemical responses of a medicinal plant (Salvia miltiorrhiza L.) to stress caused by various concentrations of NaCl. PLoS ONE 9:e89624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghanbari M, Modarres-Sanavy SAM, Mokhtassi-Bidgoli A (2019) Is time important in response of morpho-physiological parameters in Withania coagulans L. landraces to water deficit stress? Ind Crops Prod 128:18–28

    Article  Google Scholar 

  35. Ghorpade RP, Chopra A, Nikam TD (2011) Influence of biotic and abiotic elicitors on four major isomers of boswellic acid in callus culture of Boswellia serrata Roxb. Plant Omics J 4:169–176

    CAS  Google Scholar 

  36. Gorai D, Jash SK, Singh RK, Gangopadhyay A (2014) Chemical and pharmacological aspects of Limnophila aromatica (Scrophulariaceae): an overview. Am J Phytomed Clin Ther 2:348–356

    Google Scholar 

  37. Hameed A, Naseer S, Iqbal T, Syed H, Haq MA (2008) Effects of NaCI salinity on seedling growth, senescence, catalese and protease activities in two wheat genotipes differing in salt tolerance. Pak J Bot 40:1043–1051

    CAS  Google Scholar 

  38. Han JQ, Zhou YM, Li DD, Zhai GQ (2018) Effects of short-term high-salt stresses on photosynthetic characteristics, activities of protecive enzyme and copper uptake of Acorus calamus in microcosm submerged wetlands. Fresenius Environ Bull 27:982–988

    CAS  Google Scholar 

  39. Hassanein AM, Salem JM (2017) Rise potassium content of the medium improved survival, multiplication, growth and scavenging system of in vitro grown potato under salt stress. Egypt J Bot 57:259–275

    Google Scholar 

  40. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hong CY, Chao YY, Yang MY, Cho SC, Kao CH (2009) Na+ but not Cl or osmotic stress is involved in NaCl induced expression of glutathione reductase in roots of rice seedlings. J Plant Physiol 166:1598–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Husen A, Iqbal M, Khanam N, Aref IM, Sohrab SS, Masresha G (2019) Modulation of salt-stress tolerance of niger (Guizotia abyssinica), an oilseed plant, by application of salicylic acid. J Environ Biol 40:96–104

    Article  CAS  Google Scholar 

  43. Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153–166

    Article  CAS  Google Scholar 

  44. Jain PK, Das D, Jain P, Jain P (2016) Pharmacognostic and pharmacological aspect of Bacopa monnieri: a review. Innov J Ayurvedic Sci 4:7–11

    Google Scholar 

  45. Kahlaoui B, Hachicha M, Misle E, Fidalgo F, Teixeira J (2018) Physiological and biochemical responses to the exogenous application of proline of tomato plants irrigated with saline water. J Saudi Soc Agric Sci 17:17–23

    Google Scholar 

  46. Kalaji HM, Račková L, Paganová V, Swoczyna T, Rusinowski S, Sitko K (2018) Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? Environ Exp Bot 152:149–157

    Article  CAS  Google Scholar 

  47. Kean JD, Downey LA, Stough C (2016) A systematic review of the Ayurvedic medicinal herb Bacopa monnieri in child and adolescent populations. Complement Ther Med 29:56–62

    Article  PubMed  PubMed Central  Google Scholar 

  48. Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plants 4:112–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19:998–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lichtenthaler H, Wellburn A (1983) Determinations of total carotenoids and chlorophylls b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    Article  CAS  Google Scholar 

  51. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mittler R (2002) Oxidative stress, antioksidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  53. Moniruzzaman M, Mukherjee J, Jacquin L, Mukherjee D, Mitra P, Ray S, Chakraborty SB (2018) Physiological and behavioural responses to acid and osmotic stress and effects of Mucuna extract in Guppies. Ecotoxicol Environ Safe 163:37–46

    Article  CAS  Google Scholar 

  54. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  56. Nawaz K, Hussain K, Majeed A, Khan F, Afghan S, Ali K (2010) Fatality of salt stress to plants: morphological, physiological and biochemical aspects. Afr J Biotechnol 9:5475–5480

    CAS  Google Scholar 

  57. Oseni OM, Pande V, Nailwal TK (2018) A review on plant tissue culture, a technique for propagation and conservation of endangered plant species. Int J Curr Microbiol Appl Sci 7:3778–3786

    Article  CAS  Google Scholar 

  58. Oukarroum A, Bussotti F, Goltsev V, Kalaji HM (2015) Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. Environ Exp Bot 109:80–88

    Article  CAS  Google Scholar 

  59. Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plant—a review. Plant Soil Environ 54:89–99

    Article  CAS  Google Scholar 

  60. Pérez-Clemente RM, Gómez-Cadenas A (2012) In vitro tissue culture, a tool for the study and breeding of plants subjected to abiotic stress conditions. In: Leva A (ed) Recent advances in plant in vitro. InTech, London

    Google Scholar 

  61. Rao JV, Aithal KS, Srinivasan KK (1989) Antimicrobial activity of the essential oil of Limnophila gratissima. Fitoterapia 60:376–377

    Google Scholar 

  62. Reddy SSS, Singh B, Peter AJ, Rao TV (2018) Production of transgenic local rice cultivars (Oryza sativa L.) for improved drought tolerance using Agrobacterium mediated transformation. Saudi J Biol Sci 25:1535–1545

    Article  CAS  Google Scholar 

  63. Riffat A, Ahmad MSA (2016) Amelioration of adverse effects of salt stress on maize (Zea mays L.) cultivars by exogenous application of sulfur at seedling stage. Pak J Bot 48:1323–1334

    CAS  Google Scholar 

  64. Sable AD, Kardile PB, Sable AD, Kharde AV (2018) Studies on effect of different concentration of NaCI on bacoside production from brahmi (Bacopa monnieri) under in vitro condition. J Pharmacogn Phytochem 7:1386–1389

    CAS  Google Scholar 

  65. Sairam RK, Srivastava GC, Saxena DC (2000) Increased antioxidant activity under elevated temperature: a mechanism of heat stress tolerance in wheat genotypes. Biol Plant 43:245–251

    Article  CAS  Google Scholar 

  66. Salem JM, Hassanein AM, Faheed FA, El-Nagish AA (2017) Shoot regeneration and isoenzyme expression of Moringa oleifera under the influence of salt stress. Phyton-Ann Rei Bot A 57:69–78

    Google Scholar 

  67. Santos CV (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Hortic 103:93–99

    Article  CAS  Google Scholar 

  68. Shao HB, Chu LY, AbdulJaleel C, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biol 331:215–225

    Article  Google Scholar 

  69. Shekhawat MS, Kannan N, Manokari M (2015) In vitro propagation of traditional medicinal and dye yielding plant Morinda coreia Buch.–Ham. South Afr J Bot 100:43–50

    Article  CAS  Google Scholar 

  70. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  Google Scholar 

  71. Smith E, Palethorpe HM, Tomita Y, Pei JV, Townsend AR, Price TJ, Young JP, Yool AJ, Hardingham JE (2018) The purified extract from the medicinal plant Bacopa monnieri, bacopaside II, inhibits growth of colon cancer cells in vitro by inducing cell cycle arrest and apoptosis. Cells 7:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Snedecor GW, Cochran WG (1997) Statistical methods. The Iowa State University Press, Iowa

    Google Scholar 

  73. Song TT, Xu HH, Sun N, Jiang L, Tian P, Yong YY, Yang WW, Cai H, Cui GW (2017) Metabolomic analysis of alfalfa (Medicago sativa L.) root-symbiotic rhizobia responses under alkali stress. Front Plant Sci 8:1208

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sudhir P, Pogoryelov D, Kovács L, Garab G, Murthy SDS (2005) The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. J Biochem Mol Biol 38:481–485

    CAS  PubMed  Google Scholar 

  75. Taïbi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM (2013) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South Afr J Bot 105:306–312

    Article  CAS  Google Scholar 

  76. Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  CAS  Google Scholar 

  77. Uabundit N, Wattanathorn J, Mucimapura S, Ingkaninan K (2010) Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J Ethnopharmacol 127:26–31

    Article  Google Scholar 

  78. Vanlalruati AP, Kumar G, Tiwari AK (2019) Effect of saline stress on growth and biochemical indices of chrysanthemum (Chrysanthemum morifolium) germplasm. Indian J Agric Sci 89:41–45

    CAS  Google Scholar 

  79. Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu JH, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  CAS  Google Scholar 

  80. Wu W, Ma BL, Whalen JK (2018) Enhancing rapeseed tolerance to heat and drought stresses in a changing climate: perspectives for stress adaptation from root system architecture. Adv Agron 151:87–157

    Article  Google Scholar 

  81. Zhang XX, Wang TZ, Liu M, Sun W, Zhang WH (2019) Calmodulin-like gene MtCML40 is involved in salt tolerance by regulating MtHKTs transporters in Medicago truncatula. Environ Exp Bot 157:79–90

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammet Dogan.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dogan, M. Effect of salt stress on in vitro organogenesis from nodal explant of Limnophila aromatica (Lamk.) Merr. and Bacopa monnieri (L.) Wettst. and their physio-morphological and biochemical responses. Physiol Mol Biol Plants 26, 803–816 (2020). https://doi.org/10.1007/s12298-020-00798-y

Download citation

Keywords

  • Lipid peroxidation
  • Photosynthetic pigment
  • NaCI stress
  • Shoot regeneration
  • Toxicity