Skip to main content

Effect on essential oil components and wedelolactone content of a medicinal plant Eclipta alba due to modifications in the growth and morphology under different exposures of ultraviolet-B

Abstract

In the present study sensitivity of a medicinal plant Eclipta alba L. (Hassk) (False daisy) was assessed under intermittent (IT) and continuous (CT) doses of elevated ultraviolet-B (eUV-B). Eclipta alba is rich in medicinally important phytochemical constituents, used against several diseases. The hypothesis of this study is that alterations in UV-B dose may modify the quantity and quality of medicinally valuable components with changes in the morphological and physiological parameters of test plant. To fulfill our hypothesis IT and CT of eUV-B (ambient ± 7.2 kJ m−2 day−2) was given for 130 and 240 h respectively to assess the impact of UV-B stress. Growth and physiological parameters were adversely affected under both the treatments with varying magnitude. The observation of leaf surfaces showed increase in stomatal and trichome densities suggesting the adaptive resilience of the plants against UV-B. Besides, biosynthesis of wedelolactone, a major medicinal compound of E. alba was observed to be stimulated under UV-B exposure. The essential oil content was reduced under IT while increased under CT. A total of 114 compounds were identified from oil extract of E. alba. n-Pentadecane (25.79%), n-Octadecane (12.98%), β-Farnesene (9.43%), α-Humulene (4.95%) (E)-Caryophyllene (4.87%), Phytol (4.25%), α-Copaene (2.26%), Humulene epoxide (1.46%), β-Pinene (1.07) and β-Caryophyllene oxide (1.06%) were identified as major components of oil. CT induced the synthesis of some medicinally important compounds such as α-terpineol, δ-cadinene, linolenic acid, methyl linoleate and myristic acid amide. Hence, the study revealed that continuous UV-B exposure of low intensity could be helpful for commercial exploitation of essential oil in E. alba.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Allison FE (1973) Soil organic matter and its role in crop production, vol 3. Elsevier, Amsterdam

    Book  Google Scholar 

  2. Bais AF, Lucas RM, Bornman JF et al (2018) Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. Photochem Photobiol Sci 17(2):127–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baldissera MD, Grando TH, Souza CF et al (2016) Nerolidol nanospheres increases its trypanocidal efficacy against Trypanosoma evansi: new approach against diminazene aceturate resistance and toxicity. Exp Parasitol 166:144–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barnes PW, Robson TM, Tobler MA et al (2017) Plant responses to fluctuating UV environments. UV-B Radiation and Plant Life, Molecular Biology to Ecology

    Book  Google Scholar 

  5. Brunetti C, Guidi L, Sebastiani F et al (2015) Isoprenoids and phenylpropanoids are key components of the antioxidant defense system of plants facing severe excess light stress. Environ Exp Bot 119:54–62

    Article  CAS  Google Scholar 

  6. Cechin I, Fumis TDF, Dokkedal AL (2007) Growth and physiological responses of sunflower plants exposed to ultraviolet-B radiation. Ciência Rural 37(1):85–90

    Article  CAS  Google Scholar 

  7. Chokotia LS, Vashistha P, Sironiya R et al (2013) Pharmacological activities of Eclipta alba (L.). Int J Res Dev Pharm Life Sci 2(4):499–502

    Google Scholar 

  8. Choudhary KK, Agrawal SB (2016) Assessment of fatty acid profile and seed mineral nutrients of two soybean (Glycine max L.) cultivars under elevated ultraviolet-B: role of ROS, pigments and antioxidants. Photochem Photobiol 92(1):134–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Choudhary KK, Agrawal SB (2017) Effect of UV-B radiation on leguminous plants. Sustainable agriculture reviews. Springer, Cham, pp 115–162

    Chapter  Google Scholar 

  10. Day PR (1965) Particle fractionation and particle-size analysis (No. methodsofsoilana). American Society of Agronomy, Soil Science Society of America, pp 545–567

  11. Ding W, Ning L, Xiong Y et al (2017) Essential oils extracted from Phoebe hui Cheng ex Yang: chemical constituents, antitumor and antibacterial activities, and potential use as a species identifier. J Wood Chem Technol 37(3):201–210

    Article  CAS  Google Scholar 

  12. Dotto M, Casati P (2017) Developmental reprogramming by UV-B radiation in plants. Plant Sci 264:96–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Elisabetsky E (2002) Traditional medicines and the new paradigm of psychotropic drug action. Adv Phytomed 1:133–144

    Article  CAS  Google Scholar 

  14. Fidyt K, Fiedorowicz A, Strządała L et al (2016) β-caryophyllene and β-caryophyllene oxide—natural compounds of anticancer and analgesic properties. Cancer Med 5(10):3007–3017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Figueiredo AC, Barroso JG, Pedro LG et al (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr J 23(4):213–226

    Article  CAS  Google Scholar 

  16. Gautam M, Agrawal M (2017) Influence of metals on essential oil content and composition of lemongrass (Cymbopogon citratus (DC) Stapf.) grown under different levels of red mud in sewage sludge amended soil. Chemosphere 175:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamid A, Singh S, Agrawal M et al (2019) Heteropogon contortus BL-1 (Pilli Grass) and elevated UV-B radiation: the role of growth, physiological, and biochemical traits in determining forage productivity and quality. Photochem Photobiol 95(2):572–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hartsel JA, Eades J, Hickory B et al (2016) Cannabis sativa and Hemp. In: Moloughney S (ed) Nutraceuticals. Academic Press, New York, pp 735–754

    Chapter  Google Scholar 

  19. Hideg É, Jansen MA, Strid Å (2013) UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci 18(2):107–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jafri H, Ansari FA, Ahmad I (2019) Prospects of essential oils in controlling pathogenic biofilm. In: Khan MSA (ed) New look to phytomedicine. Academic Press, New York, pp 203–236

    Chapter  Google Scholar 

  21. Kendra PE, Owens D, Montgomery WS et al (2017) α-Copaene is an attractant, synergistic with quercivorol, for improved detection of Euwallacea nr. fornicatus (Coleoptera: Curculionidae: Scolytinae). PLoS ONE 12(6):e0179416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kouloussis NA, Gerofotis CD, Ioannou CS et al (2017) Towards improving sterile insect technique: exposure to orange oil compounds increases sexual signalling and longevity in Ceratitis capitata males of the Vienna 8 GSS. PLoS ONE 12(11):e0188092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kulkarni MG, Sathe PS (2013) Phytochemical and GC–MS analysis of Hamiltonia suaveolens (ROXB). Int J Chem Technol Res CODEN 5(1):212–219

    CAS  Google Scholar 

  24. Kumar S, Dhanani T (2013) Development and validation of a rapid high performance liquid chromatography-photodiode array detection method for estimation of a bioactive compound wedelolactone in extracts of Eclipta alba. Braz J Pharm Sci 49(1):57–63

    Article  CAS  Google Scholar 

  25. Kumari R, Agrawal SB (2011) Comparative analysis of essential oil composition and oil containing glands in Ocimum sanctum L. (Holy basil) under ambient and supplemental level of UV-B through gas chromatography–mass spectrometry and scanning electron microscopy. Acta Physiol Plant 33(4):1093–1101

    Article  CAS  Google Scholar 

  26. Kumari R, Singh S, Agrawal SB (2009a) Effects of supplemental ultraviolet-B radiation on growth and physiology of Acorus calamus L. (sweet flag). Acta Biol Crac Ser Bot 51:19–27

    Google Scholar 

  27. Kumari R, Singh S, Agrawal SB (2009b) Combined effects of Psoralens and ultraviolet-B on growth, pigmentation and biochemical parameters of Abelmoschus esculentus L. Ecotoxicol Environ Saf 72(4):1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li ZQ, Zhang S, Cai XM et al (2017) Three odorant binding proteins may regulate the behavioural response of Chrysopa pallens to plant volatiles and the aphid alarm pheromone (E)-β-farnesene. Insect Mol Biol 26(3):255–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liakoura V, Stefanou M, Manetas Y et al (1997) Trichome density and its UV-B protective potential are affected by shading and leaf position on the canopy. Environ Exp Bot 38(3):223–229

    Article  Google Scholar 

  30. Llorens L, Badenes-Pérez FR, Julkunen-Tiitto R et al (2015) The role of UV-B radiation in plant sexual reproduction. Perspect Plant Ecol Evol Syst 17(3):243–254

    Article  Google Scholar 

  31. Lozano-Grande MA, Gorinstein S, Espitia-Rangel E et al (2018) Plant sources, extraction methods, and uses of squalene. Int J Agron 12:20

    Google Scholar 

  32. Luo Q, Ding J, Zhu L et al (2018) Hepatoprotective effect of wedelolactone against concanavalin A-induced liver injury in mice. Am J Chin Med 46(04):819–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nguyen LT, Myslivečková Z, Szotáková B et al (2017) The inhibitory effects of β-caryophyllene, β-caryophyllene oxide and α-humulene on the activities of the main drug-metabolizing enzymes in rat and human liver in vitro. Chem Biol Interact 278:123–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Okla MK, Alamri SA, Salem MZ et al (2019) Yield, phytochemical constituents, and antibacterial activity of essential oils from the leaves/twigs, branches, branch wood, and branch bark of sour orange (Citrus aurantium L.). Processes 7(6):363

    Article  CAS  Google Scholar 

  35. Pavela R, Govindarajan M (2017) The essential oil from Zanthoxylum monophyllum a potential mosquito larvicide with low toxicity to the non-target fish Gambusia affinis. J Pest Sci 90(1):369–378

    Article  Google Scholar 

  36. Pazouki L, Niinemets Ü (2016) Multi-substrate terpene synthases: their occurrence and physiological significance. Front Plant Sci 7:1019

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rakhimberdieva MG, Stadnichuk IN, Elanskaya IV et al (2004) Carotenoid-induced quenching of the phycobilisome fluorescence in photosystem II-deficient mutant of Synechocystis sp. FEBS Lett 574(1–3):85–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ray JD, Gesch RW, Sinclair TR et al (2002) The effect of vapor pressure deficit on maize transpiration response to a drying soil. Plant Soil 239(1):113–121

    Article  CAS  Google Scholar 

  39. Reddy KR, Singh SK, Koti S et al (2013) Quantifying corn growth and physiological responses to ultraviolet-B radiation for modeling. Agron J 105(5):1367–1377

    Article  Google Scholar 

  40. Regvar M, Bukovnik U, Likar M et al (2012) UV-B radiation affects flavonoids and fungal colonisation in Fagopyrum esculentum and F. tataricum. Open Life Sci 7(2):275–283

    CAS  Google Scholar 

  41. Richter A, Schaff C, Zhang Z et al (2016) Characterization of biosynthetic pathways for the production of the volatile homoterpenes DMNT and TMTT in Zea mays. Plant Cell 28(10):2651–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rytter S, Stilling M, Munk S et al (2017) Methylprednisolone reduces pain and decreases knee swelling in the first 24 h after fast-track unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 25(1):284–290

    Article  PubMed  PubMed Central  Google Scholar 

  43. Salma U, Kundu S, Ali MN, Mandal N (2018) Elicitor mediated enhancement of wedelolactone in cell suspension culture of Eclipta alba (L.) Hassk. Plant Cell Tissue Organ Cult (PCTOC) 134(3):409–421

    Article  CAS  Google Scholar 

  44. Sayegh F, Elazzazy A, Bellou S et al (2016) Production of polyunsaturated single cell oils possessing antimicrobial and anticancer properties. Ann Microbiol 66(3):937–948

    Article  CAS  Google Scholar 

  45. Sebastian A, Kumari R, Kiran BR et al (2018) Ultraviolet B induced bioactive changes of enzymatic and non-enzymatic antioxidants and lipids in Trigonella foenum-graecum L. (Fenugreek). EuroBiotech J 2(1):64–71

    Article  Google Scholar 

  46. Shamsizadeh A, Roohbakhsh A, Ayoobi F et al (2017) The role of natural products in the prevention and treatment of multiple sclerosis. In: Watson R (ed) Nutrition and lifestyle in neurological autoimmune diseases. Academic Press, New York, pp 249–260

    Chapter  Google Scholar 

  47. Shin KO, Park MY, Seo CH et al (2012) Terpene alcohols inhibit de novo sphingolipid biosynthesis. Planta Med 78(05):434–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Singh SK, Surabhi GK, Gao W et al (2008) Assessing genotypic variability of cowpea (Vigna unguiculata [L.] Walp.) to current and projected ultraviolet-B radiation. J Photochem Photobiol B 93(2):71–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh S, Agrawal M, Agrawal SB (2013) Differential sensitivity of spinach and amaranthus to enhanced UV-B at varying soil nutrient levels: association with gas exchange, UV-B-absorbing compounds and membrane damage. Photosynth Res 115(2–3):123–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Singh S, Sarkar A, Agrawal SB et al (2014) Impact of ambient and supplemental ultraviolet-B stress on kidney bean plants: an insight into oxidative stress management. Protoplasma 251(6):1395–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Solomon S, Ivy DJ, Kinnison D et al (2016) Emergence of healing in the Antarctic ozone layer. Science 353(6296):269–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Takshak S, Agrawal SB (2014) Secondary metabolites and phenylpropanoid pathway enzymes as influenced under supplemental ultraviolet-B radiation in Withania somnifera Dunal, an indigenous medicinal plant. J Photochem Photobiol B 140:332–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Takshak S, Agrawal SB (2015) Defence strategies adopted by the medicinal plant Coleus forskohlii against supplemental ultraviolet-B radiation: augmentation of secondary metabolites and antioxidants. Plant Physiol Biochem 97:124–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Takshak S, Agrawal SB (2018) Interactive effects of supplemental ultraviolet-B radiation and indole-3-acetic acid on Coleus forskohlii Briq.: alterations in morphological-, physiological-, and biochemical characteristics and essential oil content. Ecotoxicol Environ Saf 147:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Takshak S, Agrawal SB (2019) Defense potential of secondary metabolites in medicinal plants under UV-B stress. J Photochem Photobiol B 193:51–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tarento TDC, McClure DD, Talbot A et al (2019) A potential biotechnological process for the sustainable production of vitamin K1. Crit Rev Biotechnol 39(1):1–19

    Article  CAS  Google Scholar 

  57. Tattini M, Loreto F, Fini A et al (2015) Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought-stressed Platanus × acerifolia plants during Mediterranean summers. New Phytol 207(3):613–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tripathi R, Rai K, Singh S et al (2019) Role of supplemental UV-B in changing the level of ozone toxicity in two cultivars of sunflower: growth, seed yield and oil quality. Ecotoxicology 28(3):277–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ulm R, Jenkins GI (2015) Q&A: How do plants sense and respond to UV-B radiation? BMC Biol 13(1):45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vespermann KA, Paulino BN, Barcelos MC et al (2017) Biotransformation of α-and β-pinene into flavor compounds. Appl Microbiol Biotechnol 101(5):1805–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wilson MI, Greenberg BM (1993) Protection of the D1 photosystem II reaction center protein from degradation in ultraviolet radiation following adaptation of Brassica napus L. to growth in ultraviolet-B. Photochem Photobiol 57(3):556–563

    Article  CAS  Google Scholar 

  62. Yamamoto HY, Bassi R (1996) Carotenoids: localization and function. In: Jarvi S (ed) Oxygenic photosynthesis: the light reactions. Springer, Dordrecht, pp 539–563

    Google Scholar 

  63. Yan A, Pan J, An L et al (2012) The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana. J Photochem Photobiol B 113:29–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang H, Zhao Z, Qiang W et al (2004) Effects of enhanced UV-B radiation on the hormonal content of vegetative and reproductive tissues of two tomato cultivars and their relationships with reproductive characteristics. Plant Growth Regul 43(3):251–258

    Article  CAS  Google Scholar 

  65. Yang Z, Sinclair TR, Zhu M et al (2012) Temperature effect on transpiration response of maize plants to vapour pressure deficit. Environ Exp Bot 78:157–162

    Article  Google Scholar 

  66. Yang H, Woo J, Pae AN et al (2016) α-Pinene, a major constituent of pine tree oils, enhances non-rapid eye movement sleep in mice through GABAA-benzodiazepine receptors. Mol Pharmacol 90(5):530–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yeo SK, Ali AY, Hayward OA et al (2016) β-Bisabolene, a sesquiterpene from the essential oil extract of opoponax (Commiphora guidottii), exhibits cytotoxicity in breast cancer cell lines. Phytother Res 30(3):418–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Young AJ (1991) The photoprotective role of carotenoids in higher plants. Physiol Plant 83(4):702–708

    Article  CAS  Google Scholar 

  69. Yu GH, Li W, Yuan ZY et al (2013) The effects of enhanced UV-B radiation on photosynthetic and biochemical activities in super-high-yield hybrid rice Liangyoupeijiu at the reproductive stage. Photosynthetica 51(1):33–44

    Article  CAS  Google Scholar 

  70. Zu YG, Pang HH, Yu JH et al (2010) Responses in the morphology, physiology and biochemistry of Taxus chinensis var. mairei grown under supplementary UV-B radiation. J Photochem Photobiol B 98(2):152–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Head, Department of Botany, Banaras Hindu University for providing all necessary laboratory facilities, Co-ordinator CAS in Botany, FIST (DST) and ISLS, BHU. Special thanks to CSIR, New Delhi for financial support in the form of research project (CSIR\P-25\365). Kshama Rai is thankful to CAS, Centre for Advanced Studies, Department of Botany, Banaras Hindu University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shashi Bhushan Agrawal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 530 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rai, K., Agrawal, S.B. Effect on essential oil components and wedelolactone content of a medicinal plant Eclipta alba due to modifications in the growth and morphology under different exposures of ultraviolet-B. Physiol Mol Biol Plants 26, 773–792 (2020). https://doi.org/10.1007/s12298-020-00780-8

Download citation

Keywords

  • Eclipta alba
  • Essential oil
  • eUV-B
  • Growth
  • Physiology
  • Wedelolactone