Skip to main content

Comparative transcriptome analysis in Chinese cabbage (Brassica rapa ssp. pekinesis) for DEGs of Ogura-, Polima-CMS and their shared maintainer

Abstract

Cytoplasmic male sterility (CMS) is maternally inherited trait, which hinders the ability to produce viable pollen in plants. It serves as a useful tool for hybrid seed production via exploiting heterosis in crops. The molecular mechanism of CMS and fertility restoration has been investigated in different crops. However, limited number of reports is available on comparison of Ogura- and Polima-CMS with their shared maintainer in Chinese cabbage. We performed transcript profiling of sterile Ogura CMS (Tyms), Polima CMS (22m2) and their shared maintainer line (231–330) with an aim to identify genes associated with male sterility. In this work, we identified 912, 7199 and 6381 DEGs (Differentially Expressed Genes) in 22m2 Vs Tyms, 231–330 VS 22m2 and 231–330 Vs Tyms, respectively. The GO (Gene Ontology) annotation and KEGG pathway analysis suggested that most of the DEGs were involved in pollen development, carbon metabolism, lipase activity, lipid binding, penta-tricopeptide repeat (PPR), citrate cycle and oxidative phosphorylation, which were down-regulated in both CMS lines. This result will provide an important resource for further understanding of functional pollen development, the CMS mechanism and to improve molecular breeding in Chinese cabbage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. An H, Yang Z, Yi B, Wen J, Shen J, Tu J, Ma C, Fu T (2014) Comparative transcript profiling of the fertile and sterile flower buds of pol CMS in B. napus. BMC Genom 15:258

    Article  CAS  Google Scholar 

  2. Andersson SG, Karlberg O, Canback B, Kurland CG (2003) On the origin of mitochondria: a genomics perspective. Philosophical transactions of the Royal Society of London Series B, Biological Sciences 358: 165–177; discussion 177–169

  3. Aviv D, Galun E (1980) Restoration of fertility in cytoplasmic male sterile (CMS) Nicotiana sylvestris by fusion with X-irradiated N. tabacum protoplasts. Theoretical Appl Genetics 58:121–127

    Article  CAS  Google Scholar 

  4. Carlsson J, Glimelius K (2011) Cytoplasmic male-sterility and nuclear encoded fertility restoration. In: Kempken F (ed) Plant Mitochondria. Springer, New York, pp 469–491

    Chapter  Google Scholar 

  5. Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial–nuclear interactions. Trends Genetics 23:81–90

    Article  CAS  Google Scholar 

  6. Chen L, Liu Y-G (2014) Male sterility and fertility restoration in crops. Annual Rev Plant Biol 65:579

    Article  CAS  Google Scholar 

  7. Chen J, Guan R, Chang S, Du T, Zhang H, Xing H (2011) Substoichiometrically different mitotypes coexist in mitochondrial genomes of Brassica napus L. PLoS ONE 6:e17662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ding B, Hao M, Mei D, Zaman QU, Sang S, Wang H, Wang W, Fu L, Cheng H, Hu Q (2018) Transcriptome and hormone comparison of three cytoplasmic male sterile systems in Brassica napus. Int J Mol Sci 19:4022

    Article  Google Scholar 

  9. Dong X, Kim WK, Lim YP, Kim YK, Hur Y (2013) Ogura-CMS in Chinese cabbage (Brassica rapa ssp. pekinensis) causes delayed expression of many nuclear genes. Plant Sci Int J Exp Plant Biol 199–200:7–17

    Google Scholar 

  10. Du K, Liu Q, Wu X, Jiang J, Wu J, Fang Y, Li A, Wang Y (2016) Morphological structure and transcriptome comparison of the cytoplasmic male sterility line in Brassica napus (SaNa-1A) derived from somatic hybridization and its maintainer line SaNa-1B. Front Plant Sci 7:1313

    PubMed  PubMed Central  Google Scholar 

  11. Franco LO, de Manes OCL, Hamdi S, Sachetto-Martins G, Oliveira DE DE (2002) Distal regulatory regions restrict the expression of cis-linked genes to the tapetal cells. FEBS Lett 517:13–18

    Article  CAS  Google Scholar 

  12. Fu T (1981) Production and research of rapeseed in the People’s Republic of China. Eucarpia Cruciferae Newsl 6:6–7

    Google Scholar 

  13. Fu T, Yang G, Yang X, Ma C (1995) The discovery, research and utilization of pol cytoplasmic male sterile in Brassica napus. Prog Nat Sci Commun State Key Lab 5:287–293

    Google Scholar 

  14. Han Z, Qin Y, Kong F, Deng Y, Wang Z, Shen G, Wang J, Duan B, Li R (2016) Cloning and expression analysis of eight upland cotton pentatricopeptide repeat family genes. Appl Biochem Biotechnol 180:1243–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han F, Zhang X, Yang L, Zhuang M, Zhang Y, Li Z, Fang Z, Lv H (2018) iTRAQ-based proteomic analysis of Ogura-CMS cabbage and its maintainer line. Int J Mol Sci 19:3180

    Article  CAS  Google Scholar 

  16. Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:S154–S169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang J, Zhang T, Linstroth L, Tillman Z, Otegui MS, Owen HA, Zhao D (2016) Control of anther cell differentiation by the small protein ligand TPD1 and its receptor EMS1 in Arabidopsis. PLoS Genet 12:e1006147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ke G, Zhao Z, Song Y, Zhang L, An DL (1992) Breeding of alloplasmic male sterile line CMS3411-7 in Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour) Olsson) and its application. Acta Hortic Sin 16:333–340

    Google Scholar 

  19. Li S, van Os GM, Ren S, Yu D, Ketelaar T, Emons AM, Liu CM (2010) Expression and functional analyses of EXO70 genes in Arabidopsis implicate their roles in regulating cell type-specific exocytosis. Plant Physiol 154:1819–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin S, Miao Y, Su S, Xu J, Jin L, Sun D, Peng R, Huang L, Cao J (2019) Comprehensive analysis of Ogura cytoplasmic male sterility-related genes in turnip (Brassica rapa ssp. rapifera) using RNA sequencing analysis and bioinformatics. PLoS ONE 14:e0218029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu J, Pang C, Wei H, Song M, Meng Y, Ma J, Fan S, Yu S (2015a) iTRAQ-facilitated proteomic profiling of anthers from a photosensitive male sterile mutant and wild-type cotton (Gossypium hirsutum L.). Journal of proteomics 126:68–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu J, Xiang R, Wang W, Mei D, Li Y, Mason AS, Fu L, Hu Q (2015b) Cytological and molecular analysis of Nsa CMS in Brassica napus L. Euphytica 206:279–286

    Article  CAS  Google Scholar 

  23. Liu Z, Yang Z, Wang X, Li K, An H, Liu J, Yang G, Fu T, Yi B, Hong D (2016) A mitochondria-targeted PPR protein restores pol cytoplasmic male sterility by reducing orf224 transcript levels in oilseed rape. Mol Plant 9:1082–1084

    Article  CAS  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT Method. Methods 25:402–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu X, Zhou X, Cao Y, Zhou M, McNeil D, Liang S, Yang C (2017) RNA seq analysis of cold and drought responsive transcriptomes of Zea mays ssp. mexicana L. Front Plant Sci 8:136

    PubMed  PubMed Central  Google Scholar 

  26. Luo D, Xu H, Liu Z, Guo J, Li H, Chen L, Fang C, Zhang Q, Bai M, Yao N, Wu H, Wu H, Ji C, Zheng H, Chen Y, Ye S, Li X, Zhao X, Li R, Liu YG (2013) A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 45:573–577

    Article  CAS  Google Scholar 

  27. Miernyk JA, Pretova A, Olmedilla A, Klubicova K, Obert B, Hajduch M (2011) Using proteomics to study sexual reproduction in angiosperms. Sex Plant Reprod 24:9–22

    Article  CAS  Google Scholar 

  28. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  Google Scholar 

  29. Ogura H (1968) Studies on the new male-sterility in Japanese Radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Mem Fac Agric Kagoshima Univ 6:39–78

    Google Scholar 

  30. Oh SA, Bourdon V, Dickinson HG, Twell D, Park SK (2014) Arabidopsis fused kinase TWO-IN-ONE dominantly inhibits male meiotic cytokinesis. Plant Reprod 27:7–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. O’Toole N, Hattori M, Andres C, Iida K, Lurin C, Schmitz-Linneweber C, Sugita M, Small I (2008) On the expansion of the pentatricopeptide repeat gene family in plants. Mol Biol Evol 25:1120–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pacini E, Hesse M (2002) Types of pollen dispersal units in orchids, and their consequences for germination and fertilization. Ann Botany 89:653–664

    Article  Google Scholar 

  33. Pearson O (1981) Nature and mechanisms of cytoplasmic male sterility in plants: a review. HortScience (USA) 16:482–487

    Google Scholar 

  34. Pei X, Jing Z, Tang Z, Zhu Y (2017) Comparative transcriptome analysis provides insight into differentially expressed genes related to cytoplasmic male sterility in broccoli (Brassica oleracea var. italica). Sci Horticult 217:234–242

    Article  CAS  Google Scholar 

  35. Pelletier G, Budar F (2007) The molecular biology of cytoplasmically inherited male sterility and prospects for its engineering. Curr Opin Biotechnol 18:121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pelletier G, Primard C, Vedel F, Chetrit P, Remy R, Rousselle Renard M (1983) Intergeneric cytoplasmic hybridization in cruciferae by protoplast fusion. Mol General Genet MGG 191:244–250

    Article  CAS  Google Scholar 

  37. Romualdi C, Bortoluzzi S, D’Alessi F, Danieli GA (2003) IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics 12:159–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi J, Tan H, Yu XH, Liu Y, Liang W, Ranathunge K, Franke RB, Schreiber L, Wang Y, Kai G, Shanklin J, Ma H, Zhang D (2011) Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell 23:2225–2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Singh M, Brown GG (1991) Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region. Plant Cell 3:1349–1362

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Singh SP, Singh SP, Pandey T, Singh RR, Sawant SV (2015) A novel male sterility-fertility restoration system in plants for hybrid seed production. Scientific Rep 5:11274

    Article  CAS  Google Scholar 

  42. Štorchová H (2017) The role of non-coding RNAs in cytoplasmic male sterility in flowering plants. Int J Mol Sci 18(11):2429–2441

    Article  CAS  Google Scholar 

  43. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thompson K (1972) Cytoplasmic male-sterility in oil-seed rape. Heredity 29:253–257

    Article  Google Scholar 

  45. Tian E, Roslinsky V, Cheng B (2014) Molecular marker-assisted breeding for improved Ogura CMS restorer line (RfoRfo) and mapping of the restorer gene (Rfo) in Brassica juncea. Mol Breed 34:1361–1371

    Article  CAS  Google Scholar 

  46. Verdin E, Hirschey MD, Finley LW, Haigis MC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35:669–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wan Z, Jing B, Tu J, Ma C, Shen J, Yi B, Wen J, Huang T, Wang X, Fu T (2008) Genetic characterization of a new cytoplasmic male sterility system (hau) in Brassica juncea and its transfer to B. napus. Theor Appl Genet 116:355–362

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang Y, Ma S, Wang M, Zheng X, Gu M, Hu S (2002) Sequence analysis of the gene correlated with cytoplasmic male sterility (CMS) in rape-seed (Brassica napus) Polima and Shaan 2A. Chinese Sci Bullet 47:124–127

    Google Scholar 

  49. Wang S, Wang C, Zhang X-X, Chen X, Liu J-J, Jia X-F, Jia S-Q (2016) Transcriptome de novo assembly and analysis of differentially expressed genes related to cytoplasmic male sterility in cabbage. Plant Physiol Biochem 105:224–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang ZW, De Wang C, Cai QZ, Mei SY, Gao L, Zhou Y, Wang T (2017) Identification of promoter exchange at a male fertility restorer locus for cytoplasmic male sterility in radish (Raphanus sativus L.). Mol Breed 37:82

    Article  CAS  Google Scholar 

  51. Wei X, Zhang X, Yao Q, Yuan Y, Li X, Wei F, Zhao Y, Zhang Q, Wang Z, Jiang W, Zhang X (2015) The miRNAs and their regulatory networks responsible for pollen abortion in Ogura-CMS Chinese cabbage revealed by high-throughput sequencing of miRNAs, degradomes, and transcriptomes. Front Plant Sci 6:894

    PubMed  PubMed Central  Google Scholar 

  52. Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet 9:383–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xie Y, Zhang W, Wang Y, Xu L, Zhu X, Muleke EM, Liu L (2016) Comprehensive transcriptome-based characterization of differentially expressed genes involved in microsporogenesis of radish CMS line and its maintainer. Funct Integr Genomics 16:529–543

    Article  CAS  Google Scholar 

  54. Xing M, Sun C, Li H, Hu S, Lei L, Kang J (2018) Integrated analysis of transcriptome and proteome changes related to the Ogura cytoplasmic male sterility in cabbage. PLoS ONE 13:e0193462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yamagishi H, Bhat SR (2014) Cytoplasmic male sterility in Brassicaceae crops. Breed Sci 64:38–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang Y, Yao G, Yue W, Zhang S, Wu J (2015) Transcriptome profiling reveals differential gene expression in proanthocyanidin biosynthesis associated with red green skin color mutant of pear (Pyrus communis L.). Front Plant Sci 6:795

    PubMed  PubMed Central  Google Scholar 

  57. Yu HL, Fang ZY, Liu YM, Yang LM, Zhuang M, Lv HH, Li ZS, Han FQ, Liu XP, Zhang YY (2016) Development of a novel allele-specific Rfo marker and creation of Ogura CMS fertility-restored interspecific hybrids in Brassica oleracea. Theor Appl Genet 129:1625–1637

    Article  CAS  Google Scholar 

  58. Zhang H, Wu J, Dai Z, Qin M, Hao L, Ren Y, Li Q, Zhang L (2017) Allelism analysis of BrRfp locus in different restorer lines and map-based cloning of a fertility restorer gene, BrRfp1, for pol CMS in Chinese cabbage (Brassica rapa L.). Theor Appl Genet 130:539–547

    Article  CAS  Google Scholar 

  59. Zhao DZ, Wang GF, Speal B, Ma H (2002) The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev 16:2021–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The data of this project has been deposited at NCBI under the accessions; SRR2132359, SRR2132463 and SRR4299394.

Funding

This work was supported by the National Key Research and Development Program of China (2017YFD0101802, 2016YFD0100204-18), Henan Provincial Science and Technology Open Cooperation Project (182106000052), Special Funds for Scientific Research and Development of Henan Academy of Agricultural Sciences (2019CY016), the Science Foundation of Henan Province (162300410162).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Fang Wei or Xiaowei Zhang.

Ethics declarations

Conflict of interest

There is no conflict of interests among authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Lv, Y., Zhao, Y. et al. Comparative transcriptome analysis in Chinese cabbage (Brassica rapa ssp. pekinesis) for DEGs of Ogura-, Polima-CMS and their shared maintainer. Physiol Mol Biol Plants 26, 719–731 (2020). https://doi.org/10.1007/s12298-020-00775-5

Download citation

Keywords

  • Transcriptome
  • Ogura CMS
  • Polima CMS
  • Maintainer line