Skip to main content

Diversity analysis of selected rice landraces from West Bengal and their linked molecular markers for salinity tolerance

Abstract

Study of genetic diversity in crop plants is essential for the selection of appropriate germplasm for crop improvement. As salinity posses a serious environmental challenge to rice production globally and especially in India, it is imperative that the study of large collections of germplasms be undertaken to search for salt tolerant stocks. In the present study, 64 indica germplasms were collected from different agro-climatic zones of West Bengal, India, from the Himalayan foothills in the northern part down to the southern saline belt of the state keeping in view the soil characteristics and other edaphic factors prevailing in the region. Salt tolerance parameters were used to screen the large set of germplasms in terms of root-shoot length, fresh-dry weight, chlorophyll content, Na+/K+ ratio and germination potential in presence of salt. Standard evaluation score or SES was calculated to find out tolerant to sensitive cultivar. Twenty-one SSR markers, some associated with the Saltol QTL and others being candidate gene based SSR (cgSSR) were used to study the polymorphism of collected germplasm. A wide diversity was detected among the collected germplasms at the phenotypic as well as molecular level. Of the 21 SSR markers, 15 markers were found to be polymorphic with 88 alleles. Based on phenotypic and biochemical results, 21 genotypes were identified as salinity tolerant, whereas 40 genotypes turned out to be salt susceptible. The present study shows that apart from the established salt tolerant lines, several other landraces like Bonkanta, Morisal, Ghiosh, Patni may be the source of salt tolerant donor in future breeding programs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adak S, Roy A, Das P, Mukherjee A, Sengupta S, Majumder AL (2019) Soil salinity and mechanical obstruction differentially affects embryonic root architecture in different rice genotypes from West Bengal. Plant Physiol Rep 24:192–209

    Article  CAS  Google Scholar 

  2. Adhikari BM, Bag K, Bhowmick MK, Kundu C (2011) Status paper on rice in West Bengal. Retrived from https://www.rkmp.co.in.

  3. Agrama H, Eizenga G (2008) Molecular diversity and genome-wide linkage disequilibrium patterns in a worldwide collection of Oryza sativa and its wild relatives. Euphytica 160:339–355

    Article  CAS  Google Scholar 

  4. Ali MN, Yeasmin L, Gantait S, Goswami R, Chakraborty S (2014) Screening of rice landraces for salinity tolerance at seedling stage through morphological and molecular markers. Physiol Mol Biol Plants 20:411–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Assaha DVM, Ueda A, Saneoka H, Yahyai RA, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509

    Article  PubMed  PubMed Central  Google Scholar 

  6. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chowdhury AD, Haritha G, Sunitha T, Krishnamurthy SL, Divya B, Padmavathi G, Ram T, Sarla N (2016) Haplotyping of rice genotypes using simple sequence repeat markers associated with salt tolerance. Rice Sci 23(6):317–325

    Article  Google Scholar 

  8. Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Das B, Sengupta S, Parida SK, Roy B, Ghosh M, Prasad M, Ghose TK (2013) Genetic diversity and population structure of rice landraces from Eastern and North Eastern States of India. BMC Genet 14:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Deb D (2005) Seeds of tradition, seeds of future, folk rice varieties of Eastern India. Research Foundation for Science Technology & Ecology, New Delhi

    Google Scholar 

  11. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  12. Frankel OH, Soule ME (1981) Conservation and evolution, vol 16. Cambridge University Press, New York, p 358

    Google Scholar 

  13. Fukuoka S, Suu TD, Ebana K, Trinh LN, Tsukasa N, Kazutoshi O (2006) Diversity in phenotypic profiles in landrace populations of Vietnamese rice: a case study of agronomic characters for conserving crop genetic diversity on farm. Genet Resour Crop Evol 53:753–761

    Article  Google Scholar 

  14. Ganie SA, Borgohain MJ, Kritika K, Talukdar A, Pani DR, Mondal TK (2016) Assessment of genetic diversity of Saltol QTL among the rice (Oryza sativa L.) genotypes. Physiol Mol Biol Pl 22:107–114

    Article  CAS  Google Scholar 

  15. Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK (2019) Advances in understanding salt tolerance in rice. Theor Appl Genet 132:851–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garland SH, Lewin L, Abedinia M, Henry R, Blakeney A (1999) The use of microsatellite polymorphisms for the identification of Australian breeding lines of rice (Oryza sativa L.). Euphytica 108:53–63

    Article  CAS  Google Scholar 

  17. Gregorio GB, Senadhira D, Mendoza RD (1997) Screening rice for salinity tolerance. IRRI Discussion Paper Series No. 22, International Rice Research Institute (IRRI), Manila, Philippines, pp 1–30

  18. Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jin L, Lu Y, Xiao P, Sun M, Corke H, Bao J (2010) Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theor Appl Genet 121:475–487

    Article  PubMed  PubMed Central  Google Scholar 

  21. Karhu A, Hurme P, Karjalainen M, Karvonen P, Karkkainen K, Neale D, Savolainen O (1996) Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theor Appl Genet 93:215–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karp A, Seberg O, Buiatti M (1996) Molecular techniques in the assessment of botanical diversity. Ann Bot 78:143–149

    Article  CAS  Google Scholar 

  23. Kumar G, Purty RS, Sharma MP, Singla-Pareek SL, Pareek A (2009) Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathway-related genes. J Plant Physiol 166:507–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee KS, Choi WY, Ko JC, Kim TS, Gregorio GB (2003) Salinity tolerance of japonica and indica rice (Oryza sativa L.) at the seedling stage. Planta 216:1043–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lutts S, Kinet JM, Bouharmont J (1995) Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J Exp Bot 46:1843–1852

    Article  CAS  Google Scholar 

  26. Majee M, Maitra S, Dastidar KG, Pattanaik S, Chatterjee A, Hait NC, Das KP, Majumder AL (2004) A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J Biol Chem 279:28539–23552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Masutomi Y, Takahashi K, Harasawa H, Matsuoka Y (2009) Impact assessment of climate change on rice production in Asia in comprehensive consideration of process/parameter uncertainty in general circulation models. Agric Ecosyst Environ 131:281–291

    Article  Google Scholar 

  28. Mazher AMA, El-Quesni EMF, Farahat MM (2007) Responses of ornamental and woody trees to salinity. World J Agric Sci 3:386–395

    Google Scholar 

  29. McCouch SR, Teylelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mohammadi R, Mendioro MS, Diaz GQ, Gregorio GB, Singh RK (2014) Genetic analysis of salt tolerance at seedling and reproductive stages in rice (Oryza sativa). Plant Breed 133:548–559

    Article  CAS  Google Scholar 

  31. Molla KA, Debnath AB, Ganie SA, Mondal TK (2015) Identification and analysis of novel salt responsive candidate gene based SSRs (cgSSRs) from rice (Oryza sativa L.). BMC Plant Biol 15:122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mukherjee R, Mukherjee A, Bandyopadhyay S, Mukherjee S, Sengupta S, Ray S, Majumder AL (2019) Selective manipulation of the inositol metabolic pathway for induction of salt-tolerance in indica rice variety. Sci Rep 9:5358. https://doi.org/10.1038/s41598-019-41809-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  34. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nayek S, Choudhury IH, Jaishee N, Roy S (2014) Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res J Chem Sci 4:63–69

    Google Scholar 

  36. Nguyen VN (2002) Genetic diversity in rice production: case studies from Brazil, India and Nigeria. FAO, Rome

    Google Scholar 

  37. Pal A (2016) Folk rice diversity in West Bengal: conserving this neglected treasure. NewsReach 16:4

    Google Scholar 

  38. Patel BB, Patel BB, Dav RS (2011) Studies on infiltration of saline–alkali soils of several parts of Mehsana and Patan districts of north Gujarat. J Appl Technol Environ Sanit 1:87–92

    Google Scholar 

  39. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Radanielson AM, Gaydon DS, Li T, Angeles O, Roth CH (2018) Modeling salinity effect on rice growth and grain yield with ORYZA v3 and APSIM-Oryza. Eur J Agron 100:44–55

    Article  CAS  Google Scholar 

  41. Ravikiran KT, Krishnamurthy SL, Warraich AS, Sharma PC (2017) Diversity and haplotypes of rice genotypes for seedling stage salinity tolerance analyzed through morpho-physiological and SSR markers. Field Crops Res. https://doi.org/10.1016/j.fcr.2017.04.006

    Article  Google Scholar 

  42. Ray A, Deb D, Ray R, Chattopadhay B (2013) Phenotypic characters of rice landraces reveal independent lineages of short-grain aromatic indica rice. AoB Plants 5:plt032. https://doi.org/10.1093/aobpla/plt032

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32(4):237–249

    Article  Google Scholar 

  44. Shakil SK, Sultana S, Hasan MM, Ali MD, Prodhan SH (2015) SSR marker based genetic diversity analysis of modern rice varieties and coastal landraces in Bangladesh. Ind J Biotechnol 14:33–41

    CAS  Google Scholar 

  45. Shigaki T, Cheng NH, Pittman JK, Hirschi KD (2001) Structural determinants of Ca2+ transport in the Arabidopsis Ca2+/H+ antiporter CAX1. J Biol Chem 276:43152–43159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Siangliw JL, Jongdee B, Pantuwan G, Toojinda T (2007) Developing KDML105 backcross introgression lines using marker-assisted selection for QTLs associated with drought tolerant in rice. Sci Asia 33:207–214

    Article  Google Scholar 

  47. Tahjib-Ul-Arif Md, Abu Sayed M, Islam MM, Siddiqui MN, Begum SN, Hossain MA (2018) Screening of rice landraces (Oryza sativa L.) for seedling stage salinity tolerance using morpho-physiological and molecular markers. Acta Physiol Plant 40:70

    Article  CAS  Google Scholar 

  48. Thomson MJ, de Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorrada DL, Raiz ET, Blumwald E, Seraj ZI, Singh RK, Gregorio GB, Ismail AM (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160

    Article  Google Scholar 

  49. Tóth G, Gáspári Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981

    Article  PubMed  PubMed Central  Google Scholar 

  50. Genuchten G, Gupta MT (1993) A reassessment of the crop tolerance response function. J Indian Soc Soil Sci 41:730–737

    Google Scholar 

  51. Yamaguchi T, Hamamoto S, Uozumi N (2013) Sodium transport system in plant cells. Front Plant Sci 4:410

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zeng L, Shannon MC (2000a) Salinity effects on the seedling growth and yield components of rice. Crop Sci 40:996–1003

    Article  Google Scholar 

  53. Zeng L, Shannon MC (2000b) Salinity effects on seedling growth and yield components of rice. Am J Agron 40(4):996–1003

    Google Scholar 

  54. Zhang P, Li J, Li X, Liu X, Zhao X, Lu Y (2011) Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers. PLoS ONE 6(12):e27575

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly funded by projects from the Department of Biotechnology, GOI (BT/AB/05/02/2007-III dt.21/09/2010 and BT/IN/NWO/17/ALM dated 02.09.2015), University Grants Commission-RGN Fellowship (2011-12/RGNF-SC-WES-13271) and Bose Institute, Kolkata India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arun Lahiri Majumder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adak, S., Datta, S., Bhattacharya, S. et al. Diversity analysis of selected rice landraces from West Bengal and their linked molecular markers for salinity tolerance. Physiol Mol Biol Plants 26, 669–682 (2020). https://doi.org/10.1007/s12298-020-00772-8

Download citation

Keywords

  • Rice landraces
  • SSR markers salinity
  • Saltol
  • Population structure
  • Genetic diversity