Skip to main content

Genome-wide analysis of NAC transcription factor family in maize under drought stress and rewatering

Abstract

The plant-specific NAC transcription factor (TFs) plays crucial role in plant growth as well as in stress resistance. In the present study, 87 Zea mays NAC TFs were obtained from the transcriptome analysis using drought-resistant maize inbred line Y882 as experimental material under PEG stress and rewatering treatment. Comprehensive analyses were conducted including genes structure, chromosomal localization, phylogenetic tree and motif prediction, cis-elements and expression patterns. The results showed that the 87 ZmNAC genes distributed on 10 chromosomes and were categorized into 15 groups based on their conserved gene structure and motifs. Phylogenetic tree analysis was also constructed referencing to the counterparts of Arabidopsis and rice, and the stress-related cis-elements in the promoter region were also analyzed. 87 ZmNAC genes exhibited different expression levels at 3 treatment points, indicating different response to drought stress. This genome-wide analysis of 87 ZmNAC genes will provide basis for further gene function detection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Borrill P, Harrington SA, Uauy C (2017) Genome-wide sequence and expression analysis of the NAC transcription factor family in polyploid wheat. G3 Genes Genomes Genet 7:3019–3029. https://doi.org/10.1534/g3.117.043679

    CAS  Article  Google Scholar 

  2. Bruce WB, Edmeades GO, Barker TC (2002) Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot 53:13–25. https://doi.org/10.1093/jexbot/53.366.13

    CAS  Article  PubMed  Google Scholar 

  3. Bu LD, Zhang RH, Han MM, Xue JQ, Chang Y (2009) The physiological mechanism of compensation effect in maize leaf by rewatering after draught stress. Acta Agric Boreal Occident Sin 18:88–92. https://doi.org/10.3969/j.issn.1004-1389.2009.02.020

    Article  Google Scholar 

  4. Capella M, Re DA, Arce AL, Chan RL (2014) Plant homeodomain-leucine zipper I transcription factors exhibit different functional AHA motifs that selectively interact with TBP or/and TFIIB. Plant Cell Rep 33:955–967. https://doi.org/10.1007/s00299-014-1576-9

    CAS  Article  PubMed  Google Scholar 

  5. Dung Tien L, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Lam-Son Phan T (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263–276. https://doi.org/10.1093/dnares/dsr015

    CAS  Article  Google Scholar 

  6. Fang Y, Liao K, Du H, Xu Y, Song H, Li X, Xiong L (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66:6803–6817. https://doi.org/10.1093/jxb/erv386

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Ge SS, Tang GY, Bi YP, Liu ZJ (2015) Genome-wide identification and analysis of NAC gene family in maize. Shandong Agric Sci 47:1–6. https://doi.org/10.14083/j.issn.1001-4942.2015.02.001

    Article  Google Scholar 

  8. Gong X, Zhao L, Song X, Lin Z, Gu B, Yan J, Zhang S, Tao S, Huang X (2019) Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear (Pyrus bretschneideri). BMC Plant Biol. https://doi.org/10.1186/s12870-019-1760-8

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kadier Y, Zu Y-y, Dai Q-m, Song G, Lin S-w, Sun Q-p, Pan J-b, Lu M (2017) Genome-wide identification, classification and expression analysis of NAC family of genes in sorghum Sorghum bicolor (L.) Moench. Plant Growth Regul 83:301–312. https://doi.org/10.1007/s10725-017-0295-y

    CAS  Article  Google Scholar 

  10. Kamoshita A, Rodriguez R, Yamauchi A, Wade LJ (2004) Genotypic variation in response of rainfed lowland rice to prolonged drought and rewatering. Plant Prod Sci 7:406–420. https://doi.org/10.1626/pps.7.406

    Article  Google Scholar 

  11. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. https://doi.org/10.1186/gb-2013-14-4-r36

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kou X, Wang S, Wu M, Guo R, Xue Z, Meng N, Tao X, Chen M, Zhang Y (2014) Molecular characterization and expression analysis of NAC family transcription factors in tomato. Plant Mol Biol Rep 32:501–516. https://doi.org/10.1007/s11105-013-0655-3

    CAS  Article  Google Scholar 

  13. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Liu Y, Sun J, Wu Y (2016) Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice. J Plant Res 129:955–962. https://doi.org/10.1007/s10265-016-0833-0

    CAS  Article  PubMed  Google Scholar 

  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods (San Diego, Calif) 25:402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  Article  Google Scholar 

  16. Lu M, Ying S, Zhang D-F, Shi Y-S, Song Y-C, Wang T-Y, Li Y (2012) A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Rep 31:1701–1711. https://doi.org/10.1007/s00299-012-1284-2

    CAS  Article  PubMed  Google Scholar 

  17. Mao H, Yu L, Han R, Li Z, Liu H (2016) ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis. Plant Physiol Biochem 105:55–66. https://doi.org/10.1016/j.plaphy.2016.04.018

    CAS  Article  PubMed  Google Scholar 

  18. Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta Gene Regul Mech 1819:97–103. https://doi.org/10.1016/j.bbagrm.2011.10.005

    CAS  Article  Google Scholar 

  19. Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30–44. https://doi.org/10.1016/j.gene.2010.06.008

    CAS  Article  PubMed  Google Scholar 

  20. Peng X, Zhao Y, Li X, Wu M, Chai W, Sheng L, Wang Y, Dong Q, Jiang H, Cheng B (2015) Genomewide identification, classification and analysis of NAC type gene family in maize. J Genet 94:377–390. https://doi.org/10.1007/s12041-015-0526-9

    CAS  Article  PubMed  Google Scholar 

  21. Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381. https://doi.org/10.1016/j.tplants.2012.02.004

    CAS  Article  PubMed  Google Scholar 

  22. Saidi MN, Mergby D, Brini F (2017) Identification and expression analysis of the NAC transcription factor family in durum wheat (Triticum turgidum L. ssp. durum). Plant Physiol Biochem 112:117–128. https://doi.org/10.1016/j.plaphy.2016.12.028

    CAS  Article  PubMed  Google Scholar 

  23. Schwartz S, Meshorer E, Ast G (2009) Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 16:990–995. https://doi.org/10.1038/nsmb.1659

    CAS  Article  PubMed  Google Scholar 

  24. Shan L (2003) Issues of science and technology on water saving agricultural development in China. Agric Res Arid Areas. https://doi.org/10.3321/j.issn:1000-7601.2003.01.001

    Article  Google Scholar 

  25. Shang H, Wang Z, Zou C, Zhang Z, Li W, Li J, Shi Y, Gong W, Chen T, Liu A, Gong J, Ge Q, Yuan Y (2016) Comprehensive analysis of NAC transcription factors in diploid Gossypium: sequence conservation and expression analysis uncover their roles during fiber development. Sci China Life Sci 59:142–153. https://doi.org/10.1007/s11427-016-5001-1

    CAS  Article  PubMed  Google Scholar 

  26. Shiriga K, Sharma R, Kumar K, Yadav SK, Hossain F, Thirunavukkarasu N (2014) Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize. Meta Gene 2:407–417. https://doi.org/10.1016/j.mgene.2014.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  27. So H-A, Lee J-H (2019) NAC transcription factors from soybean (Glycine max L.) differentially regulated by abiotic stress. J Plant Biol 62:147–160. https://doi.org/10.1007/s12374-018-0285-2

    CAS  Article  Google Scholar 

  28. Sun H, Hu M, Li J, Chen L, Li M, Zhang S, Zhang X, Yang X (2018) Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton. BMC Plant Biol. https://doi.org/10.1186/s12870-018-1367-5

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498. https://doi.org/10.1105/tpc.104.022699

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578. https://doi.org/10.1038/nprot.2012.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Wang Z, Dane F (2013) NAC (NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathway. Acta Physiol Plant 35:1397–1408. https://doi.org/10.1007/s11738-012-1195-4

    CAS  Article  Google Scholar 

  32. Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C, Xie Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290. https://doi.org/10.1038/cr.2009.108

    CAS  Article  PubMed  Google Scholar 

  33. Xu Z, Gongbuzhaxi Wang C, Xue F, Zhang H, Ji W (2015) Wheat NAC transcription factor TaNAC29 is involved in response to salt stress. Plant Physiol Biochem 96:356–363. https://doi.org/10.1016/j.plaphy.2015.08.013

    CAS  Article  PubMed  Google Scholar 

  34. Xue G-P, Way HM, Richardson T, Drenth J, Joyce PA, McIntyre CL (2011) Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol Plant 4:697–712. https://doi.org/10.1093/mp/ssr013

    CAS  Article  PubMed  Google Scholar 

  35. Yang X, Wang X, Ji L, Yi Z, Fu C, Ran J, Hu R, Zhou G (2015) Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Rep 34:943–958. https://doi.org/10.1007/s00299-015-1756-2

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The manuscript “Genome-Wide Analysis of NAC Transcription Factor Family in Maize under Drought Stress and Rewatering” was supported by the National Natural Science Foundation of China (No. 31471452), and the National Key Research and Development Program of China (No. 2017YFD0301106).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Li Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Yuan, Z., Zhang, P. et al. Genome-wide analysis of NAC transcription factor family in maize under drought stress and rewatering. Physiol Mol Biol Plants 26, 705–717 (2020). https://doi.org/10.1007/s12298-020-00770-w

Download citation

Keywords

  • Zea mays
  • NAC transcription factors
  • Drought
  • Expression pattern