Skip to main content

The cadmium-induced changes in the polar and neutral lipid compositions suggest the involvement of triacylglycerol in the defense response in maize

Abstract

Cadmium (Cd) is a heavy metal ion leading to morphological and physiological disorders in plants; a specific toxicity target is the membrane lipids. The total lipids were separated by thin-layer chromatography, and the fatty acid composition of the total (TLs), polar lipids (PLs) and triacylglycerol (TAG)—a neutral lipid—was analyzed in maize seedlings in hydroponics and treated by various Cd concentrations (0–200 µM Cd). The TLs and PLs significantly decreased in roots after Cd treatment, suggesting the onset of lipid peroxidation mediated by oxygen free radicals, that induce alterations of the membrane structure and function. There were also increases in the TAG from 28.2 to 36.9% of TLs, and the TAG/PLs ratio varied from 0.59 to 0.84, in control and after exposure to 200 µM Cd, respectively. The TAG plays potent roles in membrane turnover serving as energy and carbon resources for the biosynthesis of membrane lipids, to preserve membrane structure and function, and therefore cell homeostasis in response to Cd. In shoots, a significant increase in the levels of C16:0, C18:1, and C18:2, while a decrease in that of C18:3 was observed, suggesting inhibition of desaturases enzymes. These lead to impairment of the chloroplast membrane. The total lipid content did not change under Cd stress. The PLs, however, decreased from 22.4 to 13.6 mg g−1 DW; their percent to TLs varied from 86.6 to 52.5%, in control, and after Cd treatment, respectively. In conclusion, the accumulation of TAG may represent a defense strategy by which maize seedlings can withstand the effects of Cd toxicity, leading to reduced oxidative stress.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Andresen E, Küpper H (2013) Cadmium toxicity in plants. Met Ions Life Sci 11:395–413. https://doi.org/10.1007/978-94-007-5179-8_13

    Article  PubMed  CAS  Google Scholar 

  2. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15. https://doi.org/10.1104/pp.24.1.1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099

    Article  PubMed  CAS  Google Scholar 

  4. Carreau JP, Dubacq JP (1978) Adaptation of a macro-scale method to the micro-scale for fatty acid methyl transesterification of biological lipid extracts. J Chromatogr A 151:384–390. https://doi.org/10.1016/S0021-9673(00)88356-9

    Article  CAS  Google Scholar 

  5. Chaffai R, Seybou TN, Marzouk B, El Ferjani E (2007) Effects of cadmium on polar lipid composition and unsaturation in maize (Zea mays) in hydroponic culture. J Integr Plant Biol 49:1693–1702. https://doi.org/10.1111/j.1744-7909.2007.00585.x

    Article  CAS  Google Scholar 

  6. Chaffai R, Seybou TN, Marzouk B, El-Ferjani E (2009) A comparative analysis of fatty acid composition of root and shoot lipids in Zea mays under copper and cadmium stress. Acta Biol Hung 60:109–125. https://doi.org/10.1556/ABiol.60.2009.1.10

    Article  PubMed  CAS  Google Scholar 

  7. Chakraborty U, Chakraborty B (2015) Abiotic stresses in crop plants. CABI, New Delhi

    Book  Google Scholar 

  8. Chia MA, Lombardi AT, MdaG Melão, Parrish CC (2013) Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations. Aquat Toxicol 128–129:171–182. https://doi.org/10.1016/j.aquatox.2012.12.004

    Article  PubMed  CAS  Google Scholar 

  9. Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867. https://doi.org/10.1111/tpj.13299

    Article  PubMed  CAS  Google Scholar 

  10. Davidi L, Shimoni E, Khozin-Goldberg I, Zamir A, Pick U (2014) Origin of β-carotene-rich plastoglobuli in Dunaliella bardawil. Plant Physiol 164:2139–2156. https://doi.org/10.1104/pp.113.235119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Dias MC, Santos C, Pinto G, Silva AMS, Silva S (2019) Titanium dioxide nanoparticles impaired both photochemical and non-photochemical phases of photosynthesis in wheat. Protoplasma 256:69. https://doi.org/10.1007/s00709-018-1281-6

    Article  PubMed  CAS  Google Scholar 

  12. Djebali W, Zarrouk M, Brouquisse R, El Kahoui S, Limam F, Ghorbel MH, Chaïbi W (2005) Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biol 7:358–368. https://doi.org/10.1055/s-2005-837696

    Article  PubMed  CAS  Google Scholar 

  13. Fagioni M, D’Amici GM, Timperio AM, Zolla L (2009) Proteomic analysis of multiprotein complexes in the thylakoid membrane upon cadmium treatment. J Proteome Res 8:310–326. https://doi.org/10.1021/pr800507x

    Article  PubMed  CAS  Google Scholar 

  14. Faller P, Kienzler K, Krieger-Liszkay A (2005) Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site. Biochim Biophys Acta 1706:158–164. https://doi.org/10.1016/j.bbabio.2004.10.005

    Article  PubMed  CAS  Google Scholar 

  15. Folch JM, Lee GH, Stanley S (1957) A simple method for the isolation of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  16. Formighieri C (2015) Solar-to-fuel conversion in algae and cyanobacteria. Springer, Cham

    Book  Google Scholar 

  17. Fried B, Sherma J (1999) Thin-layer chromatography, revised and expanded, 4th edn. CRC Press, New York

    Book  Google Scholar 

  18. Goncalves EC, Johnson JV, Rathinasabapathi B (2013) Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29. Planta 238:895–906. https://doi.org/10.1007/s00425-013-1946-5

    Article  PubMed  CAS  Google Scholar 

  19. Grillitsch K, Connerth M, Köfeler H, Arrey TN, Rietschel B, Wagner B, Karas M, Daum G (2011) Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: Lipidome meets Proteome. Biochim Biophys Acta Mol Cell Biol Lipids 1811:1165–1176. https://doi.org/10.1016/j.bbalip.2011.07.015

    Article  CAS  Google Scholar 

  20. Guo S, Zhou H, Zhang X, Li X, Meng Q (2007) Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance. J Plant Physiol 164:126–136. https://doi.org/10.1016/j.jplph.2006.01.004

    Article  PubMed  CAS  Google Scholar 

  21. Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186. https://doi.org/10.1016/j.plipres.2006.01.001

    Article  PubMed  CAS  Google Scholar 

  22. Harwood JL, Gurr MI (2013) Lipid biochemistry: an introduction. Springer, Boston

    Google Scholar 

  23. Heazlewood JL, Jorrín-Novo JV, Agrawal GK, Mazzuca S, Lüthje S (2016) Editorial: international plant proteomics organization (INPPO) world congress 2014. Front Plant Sci 7:1190. https://doi.org/10.3389/fpls.2016.01190

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hoagland D, Arnon DI (1950) The water culture method for growing plants without soil. College of Agriculture, University of California, Berkeley

    Google Scholar 

  25. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x

    Article  PubMed  CAS  Google Scholar 

  26. Khotimchenko SV, Yakovleva IM (2004) Effect of solar irradiance on lipids of the green alga Ulva fenestrata Postels et Ruprecht. Bot Mar 47:395–401. https://doi.org/10.1515/BOT.2004.050

    Article  CAS  Google Scholar 

  27. Kohlwein SD, Henry SA (2011) Coordination of storage lipid synthesis and membrane biogenesis: evidence for cross-talk between triacylglycerol metabolism and phosphatidylinositol synthesis. J Biol Chem 286:1696–1708. https://doi.org/10.1074/jbc.M110.172296

    Article  PubMed  CAS  Google Scholar 

  28. Kranner I, Colville L (2011) Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ Exp Bot 72:93–105. https://doi.org/10.1016/j.envexpbot.2010.05.005

    Article  CAS  Google Scholar 

  29. Krupa SV, Legge AH (1999) Foliar injury symptoms of Saskatoon serviceberry (Amelanchier alnifolia Nutt.) as a biological indicator of ambient sulfur dioxide exposures. Environ Pollut 106:449–454. https://doi.org/10.1016/S0269-7491(99)00082-2

    Article  PubMed  CAS  Google Scholar 

  30. Küpper H, Parameswaran A, Leitenmaier B, Trtílek M, Šetlík I (2007) Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol 175:655–674. https://doi.org/10.1111/j.1469-8137.2007.02139.x

    Article  PubMed  Google Scholar 

  31. Légeret B, Schulz-Raffelt M, Nguyen HM, Auroy P, Beisson F, Peltier G, Blanc G, Li-Beisson Y (2016) Lipidomic and transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids. Plant Cell Environ 39:834–847. https://doi.org/10.1111/pce.12656

    Article  PubMed  CAS  Google Scholar 

  32. Liu K, Shen L, Sheng J (2008) Improvement in cadmium tolerance of tomato seedlings with an antisense DNA for 1-aminocyclopropane-1-carboxylate synthase. J Plant Nutr 31:809–827. https://doi.org/10.1080/01904160802043080

    Article  CAS  Google Scholar 

  33. Lu LL, Tian SK, Yang XE, Li TQ, He ZL (2009) Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii. J Plant Physiol 166:579–587. https://doi.org/10.1016/j.jplph.2008.09.001

    Article  PubMed  CAS  Google Scholar 

  34. Lux A, Martinka M, Vaculik M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37. https://doi.org/10.1093/jxb/erq281

    Article  PubMed  CAS  Google Scholar 

  35. Mangold HK (1961) Thin-layer chromatography of lipids. J Am Oil Chem Soc 38:708–727. https://doi.org/10.1007/BF02633061

    Article  CAS  Google Scholar 

  36. Meï CE, Cussac M, Haslam RP, Beaudoin F, Wong YS, Maréchal E, Rébeillé F (2017) C1 metabolism inhibition and nitrogen deprivation trigger triacylglycerol accumulation in Arabidopsis thaliana cell cultures and highlight a role of NPC in phosphatidylcholine-to-triacylglycerol pathway. Front Plant Sci 7:2014. https://doi.org/10.3389/fpls.2016.02014

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nouairi I, Ghnaya T, Youssef NB, Zarrouk M, Ghorbel MH (2006) Changes in content and fatty acid profiles of total lipids of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum under cadmium stress. J Plant Physiol 163:1198–1202. https://doi.org/10.1016/j.jplph.2005.08.020

    Article  PubMed  CAS  Google Scholar 

  38. Osanai T, Park Y-I, Nakamura Y (2017) Editorial: biotechnology of microalgae, based on molecular biology and biochemistry of eukaryotic algae and cyanobacteria. Front Microbiol 8:118. https://doi.org/10.3389/fmicb.2017.00118

    Article  PubMed  PubMed Central  Google Scholar 

  39. Parvaiz A, Prasad MNV (2011) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, Berlin

    Google Scholar 

  40. Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548. https://doi.org/10.1046/j.1365-313X.2002.01442.x

    Article  PubMed  CAS  Google Scholar 

  41. Perreault F, Dionne J, Didur O, Juneau P, Popovic R (2011) Effect of cadmium on photosystem II activity in Chlamydomonas reinhardtii: alteration of O-J-I-P fluorescence transients indicating the change of apparent activation energies within photosystem II. Photosynth Res 107:151–157. https://doi.org/10.1007/s11120-010-9609-x

    Article  PubMed  CAS  Google Scholar 

  42. Pick U, Avidan O (2017) Triacylglycerol is produced from starch and polar lipids in the green alga Dunaliella tertiolecta. J Exp Bot 68:4939–4950. https://doi.org/10.1093/jxb/erx280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol 133:829–837. https://doi.org/10.1104/pp.103.026518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Popko J, Herrfurth C, Feussner K, Ischebeck T, Iven T, Haslam R, Hamilton M, Sayanova O, Napier J, Khozin-Goldberg I, Feussner I (2016) Metabolome analysis reveals betaine lipids as major source for triglyceride formation, and the accumulation of sedoheptulose during nitrogen-starvation of Phaeodactylum tricornutum. PLoS ONE 11:e0164673. https://doi.org/10.1371/journal.pone.0164673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Rajakumari S, Grillitsch K, Daum G (2008) Synthesis and turnover of non-polar lipids in yeast. Prog Lipid Res 47:157–171. https://doi.org/10.1016/j.plipres.2008.01.001

    Article  PubMed  CAS  Google Scholar 

  46. Razeghifard R (2013) Algal biofuels. Photosynth Res 117:207–219. https://doi.org/10.1007/s11120-013-9828-z

    Article  PubMed  CAS  Google Scholar 

  47. Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS, Risueño MC, Del Río LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243. https://doi.org/10.1104/pp.108.131524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126. https://doi.org/10.1093/jexbot/52.364.2115

    Article  PubMed  CAS  Google Scholar 

  49. Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83. https://doi.org/10.1016/S0378-4274(02)00381-8

    Article  PubMed  CAS  Google Scholar 

  50. Sato A, Matsumura R, Hoshino N, Tsuzuki M, Sato N (2014) Responsibility of regulatory gene expression and repressed protein synthesis for triacylglycerol accumulation on sulfur-starvation in Chlamydomonas reinhardtii. Front Plant Sci 5:444. https://doi.org/10.3389/fpls.2014.00444

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898. https://doi.org/10.1104/pp.010318

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50. https://doi.org/10.1016/j.tplants.2008.10.007

    Article  PubMed  CAS  Google Scholar 

  53. Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7. https://doi.org/10.1186/1472-6750-11-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Tjellström H, Strawsine M, Ohlrogge JB (2015) Tracking synthesis and turnover of triacylglycerol in leaves. J Exp Bot 66:1453–1461. https://doi.org/10.1093/jxb/eru500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Verdoni N, Mench M, Cassagne C, Bessoule J (2001) Fatty acid composition of tomato leaves as biomarkers of metal-contaminated soils. Environ Toxicol Chem 20:382–388. https://doi.org/10.1002/etc.5620200220

    Article  PubMed  CAS  Google Scholar 

  56. Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild type and starchless Chlamydomonas reinhardtii, Eukaryot. Cell 8:1856–1868. https://doi.org/10.1128/EC.00272-09

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I dedicate this work to the memory of my supervisor at the Master’s Level Prof Ali Tekitek who advanced my knowledge on thin-layer chromatography techniques through his full encouragement and insightful support. Also, I am grateful to Prof Brahim Marzouk, a retired professor of plant biochemistry and a pioneering expert of plant lipids, for proposing the research theme and plan of this work and his competent help and assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Radhouane Chaffai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chaffai, R., Cherif, A. The cadmium-induced changes in the polar and neutral lipid compositions suggest the involvement of triacylglycerol in the defense response in maize. Physiol Mol Biol Plants 26, 15–23 (2020). https://doi.org/10.1007/s12298-019-00734-9

Download citation

Keywords

  • Cadmium
  • Neutral lipids
  • Polar lipids
  • Thin layer chromatography
  • Triacylglycerol
  • Zea mays