Skip to main content

Genetic assessment of the internal transcribed spacer region (ITS1.2) in Mangifera indica L. landraces

Abstract

Mango (Mangifera indica) is one of the most important tropical fruits in the world. Twenty-two genotypes of native mangoes from different regions of southern Iran (Hormozgan and Kerman) were collected and analyzed for the ribosomal genes. GC content was found to be 55.5%. Fu and Li’s D* test statistic (0.437), Fu and Li’s F* test statistic (0.500) and Tajima’s D (1.801) were positive and nonsignificant. A total of 769 positions were identified (319 with insertion or deletion including 250 polymorphic and 69 monomorphic loci; 450 loci without any insertion or deletion including 35 Singletons and 22 haplotypes). Nucleotide diversity of 0.309 and a high genetic differentiation including Chi square of 79.8; P value of 0.3605 and df value of 76 was observed among mango genotypes studied. The numerical value of the ratio dN/dS (0.45) indicated a pure selection in the examined gene and the absence of any key changes. Cluster analysis differentiated the mango used in this research (M. indica L.) into two genotypes but could not differentiate their geographical locations. The results of this study indicated that a high genetic distance exists between HajiGholam (Manojan) and Arbabi (Rodan) genotypes and showed higher genetic diversity in mango of Rodan region. Results of present study suggested that for successful breeding, the genotypes of Rodan region mango especially Arbabi mango can be used as a gene donor and ITS can be a suitable tool for genetic evaluations of inter and intra species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252(5013):1651–1656

    PubMed  CAS  Google Scholar 

  2. Ansari S, Solouki M, Fakheri B, Fazeli-Nasab B, Mahdinezhad N (2018) Assessment of molecular diversity of internal transcribed spacer region in some lines and landrace of Persian Clover (Trifolium resupinatum L). Potravin Slovak J Food Sci 12(1):657–666

    Google Scholar 

  3. Azimzade M, Amir R, Osare MH, Bihamta MR, Frotan M (2014) Evaluation of genetic diversity of Iranian Cumin (Bunium persicum Boiss) of nuclear ribosomal DNA using ITS. J Gen Res Plant Breed Past For 22(1):1–10

    Google Scholar 

  4. Bahari Z, Shojaeiyan A, Rashidi Monfared S, Mirshekari A, Nasiri K, Amiriyan M (2015) Investigation of genetic diversity among some Iranian Dill (Anethum graveolens L.) landraces, using ISSR markers. Plant Gen Resour-C J 2(1):11–22

    Google Scholar 

  5. Damodaran T, Kannan R, Ahmed I, Srivastava R, Rai R, Umamaheshwari S (2012) Assessing genetic relationships among mango (Mangifera indica L) accessions of Andaman Islands using inter simple sequence repeat markers. N Z J Crop Hortic 40(4):229–240

    CAS  Google Scholar 

  6. Dehdashtian Z, Mr Wahabi, Fazilati M, Ghaedi K, Salamian A (2011) Analysis of the genetic diversity of Astragalus gossypinus population in Isfahan. Genet 3rd Millenn 9(3):2474–2480

    Google Scholar 

  7. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1(4):19–21

    CAS  Google Scholar 

  8. Druzhinina IS, Kopchinskiy AG, Komoń M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42(10):813–828

    PubMed  CAS  Google Scholar 

  9. Emmami S (2001) Culture and growing of Mango. The Production Office of Promotion Programs and Technical Press, p 353

  10. Fazeli-Nasab B, Fahmide L (2018) Evaluation of antioxidant properties and phenolic compounds of different mango (Mangifera indica L.) genotypes in Kerman and Hormozgan. J Crop Sci Res Arid Regions (in press)

  11. Forni D, Cagliani R, Pozzoli U, Colleoni M, Riva S, Biasin M, Filippi G, De Gioia L, Gnudi F, Comi GP (2013) A 175 million year history of T cell regulatory molecules reveals widespread selection, with adaptive evolution of disease alleles. Immunity 38(6):1129–1141

    PubMed  CAS  Google Scholar 

  12. Fu Y-X, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133(3):693–709

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Fullerton SM, Bernardo Carvalho A, Clark AG (2001) Local rates of recombination are positively correlated with GC content in the human genome. Mol Biol Evol 18(6):1139–1142

    PubMed  CAS  Google Scholar 

  14. Gitahi R, Kasili R, Kyallo M, Kehlenbeck K (2016) Diversity of threatened local mango landraces on smallholder farms in Eastern Kenya. For Trees Livelihoods 25(4):239–254

    Google Scholar 

  15. Goka K, Yokoyama J, Une Y, Kuroki T, Suzuki K, Nakahara M, Kobayashi A, Inaba S, Mizutani T, Hyatt AD (2009) Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan. Mol Ecol 18(23):4757–4774

    PubMed  CAS  Google Scholar 

  16. Haidari P, Mehrabi AA, Nasrollah Nejad Ghomi AA (2014) Genetic diversity of Balm (Melissa officinalis L.) landraces and genetic relationship within and between them using ITS markers. J Crop Breed 6(13):29–39

    Google Scholar 

  17. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series. Information Retrieval Ltd., London, c1979–c2000, pp 95–98

  18. Henry T, Iwen PC, Hinrichs SH (2000) Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J Clin Microbiol 38(4):1510–1515

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Hidayat T, Arif SM, Samad AA (2013) Molecular biodiversity of selected mango cultivars based on DNA sequences of internal transcribed spacer region. Pak J Biol Sci 16(19):1072–1075

    PubMed  Google Scholar 

  20. Jani Pour L, Fahmideh I, Fazeli-Nasab B (2018) Genetic assessment of some populations of the medicinal plant Caraway (Carum carvi) using RAPD and ISSR markers. J Iran Plant Ecophysiol Res 12(48):78–91

    Google Scholar 

  21. Karihaloo J, Dwivedi Y, Archak S, Gaikwad AB (2003) Analysis of genetic diversity of Indian mango cultivars using RAPD markers. J Hortic Sci Biotechnol 78(3):285–289

    CAS  Google Scholar 

  22. Kumar H, Narayanaswamy P, Prasad T, Mukunda G, Sondur S (2001) Estimation of genetic diversity of commercial mango (Mangifera indica L.) cultivars using RAPD markers. J Hortic Sci Biotechnol 76(5):529–533

    CAS  Google Scholar 

  23. Lal S, Singh AK, Singh SK, Srivastav M, Singh BP, Sharma N, Singh NK (2017) Association analysis for pomological traits in mango (Mangifera indica L.) by genic-SSR markers. Trees 31(5):1391–1409

    CAS  Google Scholar 

  24. Litz RE (2009) The mango: botany, production and uses. CABI, Wallingford

    Google Scholar 

  25. Liu F, Hu Y, Wang Q, Li HM, Gao GF, Liu CH, Zhu B (2014) Comparative genomic analysis of Mycobacterium tuberculosis clinical isolates. BMC Genom 15(1):469

    Google Scholar 

  26. McKain MR, Johnson MG, Uribe Convers S, Eaton D, Yang Y (2018) Practical considerations for plant phylogenomics. Appl Plant Sci 6(3):e1038

    PubMed  PubMed Central  Google Scholar 

  27. Naghavi MR, Mardi M, Ramshini HA, Fazeli-Nasab B (2004) Comparative analyses of the genetic diversity among bread wheat genotypes based on RAPD and SSR markers. Iran J Biotechnol 2(3):195–202

    CAS  Google Scholar 

  28. Nashima K, Terakami S, Kunihisa M, Nishitani C, Shoda M, Matsumura M, Onoue-Makishi Y, Urasaki N, Tarora K, Ogata T (2017) Retrotransposon-based insertion polymorphism markers in mango. Tree Genet Genomes 13(5):110

    Google Scholar 

  29. Ninou EG, Mylonas IG, Tsivelikas AL, Ralli PE (2017) Phenotypic diversity of Greek dill (Anethum graveolens L.) landraces. Acta Agric Scand B-Soil Plant 67(4):318–325

    Google Scholar 

  30. Parkin EJ, Butlin RK (2004) Within-and between-individual sequence variation among ITS1 copies in the meadow grasshopper Chorthippus parallelus indicates frequent intrachromosomal gene conversion. Mol Biol Evol 21(8):1595–1601

    PubMed  CAS  Google Scholar 

  31. Ravishankar K, Padmakar B, Lavanya B, Mani B, Dinesh M (2017) Development and characterization of microsatellite loci from mango (Mangifera indica L.). Indian J Biotechnol 6(2):250–253

    Google Scholar 

  32. Robinson J, Harris S, Juniper B (2001) Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple, Malus domestica Borkh. Plant Syst Evol 226(1):35–58

    CAS  Google Scholar 

  33. Rodriguez-Lanetty M (2003) Evolving lineages of Symbiodinium-like dinoflagellates based on ITS1 rDNA. Mol Phylogenet Evol 28(1):152–168

    PubMed  CAS  Google Scholar 

  34. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19(18):2496–2497

    PubMed  CAS  Google Scholar 

  35. Sargazi A, Fakheri B, Soloki M, Fazeli-Nasab B (2016) Genetic diversity of some population of medicinal Ajowan (Carum copticum) using RAPD marker. J Med Plants Biotechnol 2(3):22–36

    Google Scholar 

  36. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci 109(16):6241–6246

    PubMed  CAS  Google Scholar 

  37. Sharp PM, Li W-H (1986) Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’codons. Nucl Acids Res 14(19):7737–7749

    PubMed  CAS  Google Scholar 

  38. Simonsen KL, Churchill GA, Aquadro CF (1995) Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141(1):413–429

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Singh Z, Singh SP (2012) Mango. Crop Post-harvest: Sci Technol 108–142

  40. Swaroop A, Stohs SJ, Bagchi M, Moriyama H, Bagchi D (2018) Mango (Mangifera indica Linn) and anti-inflammatory benefits: versatile roles in mitochondrial bio-energetics and exercise physiology. Funct Food Health Dis 8(5):267–279

    CAS  Google Scholar 

  41. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526

    PubMed  CAS  Google Scholar 

  43. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Tiwari DK, Patel V, Pandey A (2018) Floral induction in mango: physiological, biochemical and molecular basis. IJCS 6(1):252–259

    CAS  Google Scholar 

  46. Uwai S, Yotsukura N, Serisawa Y, Muraoka D, Hiraoka M, Kogame K (2006) Intraspecific genetic diversity of Undaria pinnatifida in Japan, based on the mitochondrial cox3 gene and the ITS1 of nrDNA. Hydrobiologia 553(1):345–356

    CAS  Google Scholar 

  47. Varela ES, Lima JP, Galdino AS, Pinto LdS, Bezerra WM, Nunes EP, Alves MA, Grangeiro TB (2004) Relationships in subtribe Diocleinae (Leguminosae; Papilionoideae) inferred from internal transcribed spacer sequences from nuclear ribosomal DNA. Phytochemistry 65(1):59–69

    PubMed  CAS  Google Scholar 

  48. Watterson G (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7(2):256–276

    PubMed  CAS  Google Scholar 

  49. Wu C-T, Hsieh C-C, Lin W-C, Tang C-Y, Yang C-H, Huang Y-C, Ko Y-J (2013) Internal transcribed spacer sequence-based identification and phylogenic relationship of I-Tiao-Gung originating from Flemingia and Glycine (Leguminosae) in Taiwan. J Food Drug Anal 21(4):356–362

    CAS  Google Scholar 

  50. Yonemori K, Honsho C, Kanzaki S, Eiadthong W, Sugiura A (2002) Phylogenetic relationships of Mangifera species revealed by ITS sequences of nuclear ribosomal DNA and a possibility of their hybrid origin. J Syst Evol 231(1–4):59–75

    CAS  Google Scholar 

  51. Yousef EA, Mueller T, Börner A, Schmid KJ (2018) Comparative analysis of genetic diversity and differentiation of cauliflower (Brassica oleracea var. botrytis) accessions from two ex situ genebanks. PLoS ONE 13(2):0192062

    Google Scholar 

Download references

Acknowledgements

HE would like to thank the MOE and UTM-RMC (Malaysia) for support through the HICoE grant No. RJ130000.7846.4J262. RZS would like to extend his sincere appreciation to Dr. Rajeev K Varshney, Director, Center of Excellence in Genomics and Systems Biology, ICRISAT, Patancheru - 502324, Hyderabad, India for reviewing and editing the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Z. Sayyed.

Ethics declarations

Human and animal rights statements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fazeli-Nasab, B., Sayyed, R.Z., Farsi, M. et al. Genetic assessment of the internal transcribed spacer region (ITS1.2) in Mangifera indica L. landraces. Physiol Mol Biol Plants 26, 107–117 (2020). https://doi.org/10.1007/s12298-019-00732-x

Download citation

Keywords

  • Mango
  • ITS region
  • dN/dS
  • GC content
  • Nucleotide diversity
  • Haplotype
  • Singleton
  • Ribosomal genes
  • Cluster analysis