Skip to main content

Alleviation of cadmium-induced genotoxicity and cytotoxicity by calcium chloride in faba bean (Vicia faba L. var. minor) roots

Abstract

Alleviation of cadmium-induced root genotoxicity and cytotoxicity by calcium chloride (CaCl2) in faba bean (Vicia faba L. var. minor) seedlings were studied. Faba bean seeds were treated with H2O or 2% CaCl2 for 6 h before germination. Seeds were then exposed to 0 and 50 µM CdCl2 concentrations for 7 days. Genotoxic damaging effects of Cd was examined through the determination of the mitotic index (MI), chromosomal aberrations (CA) and micronucleus (MN) in the meristem cells of faba bean roots. Similarly, effects of Cd stress on metal accumulation, total membrane lipid contents, total fatty acid composition (TFA), lipid peroxidation as indicated by malondialdehyde production, soluble protein and non-protein thiols (NP-SH) contents, hydrogen peroxide production and the activities of superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GPX) were evaluated after 7 days of Cd stress in the seedling roots. Cd stress resulted in the reduction of MI, in addition to MN formation and CA induction in the roots of non-primed seeds (treated with H2O). Moreover, Cd induced lipid peroxidation, H2O2 overproduction and loss of membrane lipid amount and soluble protein content, and changes in the TFA composition in roots of faba bean seedlings. SOD activity declined, but CAT and GPX activities increased. However, seed pre-treatment with CaCl2 attenuated the genotoxic and cytotoxic effects of Cd on Vicia faba roots. The results showed that CaCl2 induced reduction of Cd accumulation, improved cell membrane stability and increased the antioxidant defence systems, thus reducing and alleviating Cd genotoxicity and oxidative damage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abd_Allah EF, Hashem A, Alqarawia AA, Wirth S, Egamberdieva D (2017) Calcium application enhances growth and alleviates the damaging effects induced by Cd stress in sesame (Sesamum indicum L.). J Plant Interact 12:237–243

    Article  CAS  Google Scholar 

  2. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  3. Ahlam KM, Basalah MO (2015) The active role of calcium chloride on growth and photosynthetic pigments of cowpea “Vigna unguiculata L. (Walp)” under salinity stress conditions. Am Eurasian J Agric Environ Sci 15:2011–2020

    Google Scholar 

  4. Ahmad I, Akhtar MJ, Zahir ZA, Jamil A (2012) Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pak J Bot 5:1569–1574

    Google Scholar 

  5. Ahsan N, Lee SH, Lee DG, Lee H, Lee SW, Bahk JD, Lee BH (2007) Physiological and protein profiles alternation of germinating rice seedlings exposed to nacute cadmium toxicity. C R Biol 330:735–746

    Article  CAS  PubMed  Google Scholar 

  6. Al-beltagi H, Mohamed H (2013) Alleviation of cadmium toxicity in Pisum sativum L. seedlings by calcium chloride. Not Bot Horti Agrobo 41:157–168

    Article  Google Scholar 

  7. Albertini RJ, Anderson D, Douglas GR, Hagmar L, Hemminki K, Merlo F, Natarajan AT, Norppa H, Shuker DE, Tice R, Waters MD, Aitio A (2000) IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. International Programme on Chemical Safety. Mutat Res 463:111–172

    Article  CAS  PubMed  Google Scholar 

  8. Ali S, Chaudhary A, Rizwan M, Anwar HT, Adrees M, Farid M, Irshad MK, Hayat T, Anjum SA (2015) Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Environ Sci Pollut R 22:10669–10678

    Article  CAS  Google Scholar 

  9. Amirjani M (2012) Effects of cadmium on wheat growth and some physiological factors. Int Forest Soil Eros 2:50–58

    Google Scholar 

  10. Andosch A, Affenzeller MJ, Lütz C, Lütz-Meindl U (2012) A freshwater green alga under cadmium stress: ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias. J Plant Physiol 169:1489–1500

    Article  CAS  PubMed  Google Scholar 

  11. Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants-role of plant growth regulators. Protoplasma 252:399–413

    Article  CAS  PubMed  Google Scholar 

  12. Bandurska H (2001) Proline accumulation during hardening and its involvement in reducing membrane injuries in leaves subjected to severe osmotic stress. Acta Physiol Plant 23:483–490

    Article  CAS  Google Scholar 

  13. Benavides MP, Gallego SM, Tomar ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  14. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  15. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  16. Chengbin X, Li X, Zhang L (2013) The effect of calcium chloride on growth, photosynthesis and antioxidant responses of Zoysia japonica under drought conditions. PLoS ONE 8(7):e68214

    Article  CAS  Google Scholar 

  17. Choudhury S, Panda SK (2004) Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulg J Plant Physiol 30:95–110

    CAS  Google Scholar 

  18. Devos CHR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858

    Article  CAS  Google Scholar 

  19. Dong J, Mao WH, Zhang GP, Cai Y (2007) Root excretion and plant tolerance to cadmium toxicity. Plant Environ J 53:193–200

    CAS  Google Scholar 

  20. Douce R (1964) Identification et dosage de quelques glycerophosphatides dans des souches normales et tumorales descosoneres cultivés in vitro. C R Acad Sci 259:3066–3068

    CAS  Google Scholar 

  21. Farooq MA, Ali S, Hameed A, Ishaque W, Mahmood K, Iqbal Z (2013) Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicol Environ Saf 96:242–249

    Article  CAS  PubMed  Google Scholar 

  22. Farooq S, Hussain M, Jabran K, Hassan W, Rizwan MS, Yasir TA (2017) Osmopriming with CaCl2 improves wheat (Triticum aestivum L.) production under water-limited environments. Environ Sci Pollut Res 24:13638–13649

    Article  CAS  Google Scholar 

  23. Farzadfar S, Zarinkamar F, Modarres-Sanavy SAM, Hojati M (2013) Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L. Plants. Environ Sci Pollut Res 20:1413–1422

    Article  CAS  Google Scholar 

  24. Fatima RA, Ahmad M (2005) Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater. Sci Total Environ 346:256–273

    Article  CAS  PubMed  Google Scholar 

  25. Filipic M (2012) Mechanisms of cadmium induced genomic instability. Mutat Res 733:69–77

    Article  CAS  PubMed  Google Scholar 

  26. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fusconi A, Repetto O, Bona E, Massa N, Gallo C, Dumas-Gaudot E, Berta G (2006) Effects of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv Frisson seedlings. Environ Exp Bot 58:253–260

    Article  CAS  Google Scholar 

  28. Fusconi A, Gallo C, Camusso W (2007) Effects of cadmium on root apical meristem of Pisum sativum L.: cell viability, cell proliferation and microtubule pattern as suitable markers for assessment of stress pollution. Mutat Res Genet Toxicol Environ Mutagen 632:9–19

    Article  CAS  Google Scholar 

  29. Gichner T, Patkova Z, Szakova J, Demnerova K (2004) Cadmium induces DNA damage in tobacco roots, but no DNA damage, somatic mutations or homologous recombination in tobacco leaves. Mutat Res 559:49–57

    Article  CAS  PubMed  Google Scholar 

  30. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  31. Guo B, Liang Y, Zhu Y (2009) Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? J Plant Physiol 166:20–31

    Article  CAS  PubMed  Google Scholar 

  32. Gupta DK, Palma JM, Corpas FJ (2015) Reactive oxygen species and oxidative damage in plants under stress. Springer, Berlin, pp 1–22

    Book  Google Scholar 

  33. Hernández JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea plants. Physiol Plant 115:251–257

    Article  PubMed  Google Scholar 

  34. Heydecker W, Coolbear P (1977) Seed treatments for improved performance survey and attempted prognosis. Seed Sci Technol 5:353–425

    CAS  Google Scholar 

  35. Jan I, Rab A, Sajid M (2015) Influence of calcium chloride on storability and quality of apple fruits. Pak J Agric Sci 52:115–122

    Google Scholar 

  36. Karabal E, Yucel M, Oktem HA (2003) Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci 164:925–933

    Article  CAS  Google Scholar 

  37. Klein CB, Leszczynska J, Hickey TC, Rossman T (2007) Further evidence against a direct genotoxic mode of action for arsenic induced cancer. Toxicol Appl Pharmacol 222:289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li T, Di Z, Han X, Yang X (2012) Elevated CO2 improves root growth and cadmium accumulation in the hyperaccumulator Sedum alfredii. Plant Soil 354:325–334

    Article  CAS  Google Scholar 

  39. Lux A (2010) Does diversity in root structure affect the diversity in cadmium uptake by plants? Opinion paper. Agrochimica 54:342–352

    Google Scholar 

  40. Lux A, Vaculík M, Martinka M, Lišková D, Kulkarni MG, Stirk WA, Van Staden J (2011) Cadmium induces hypodermal periderm formation in the roots of the monocotyledonous medicinal plant Merwilla plumbea. Ann Bot 107:285–292

    Article  CAS  PubMed  Google Scholar 

  41. Ma Z, Baskin TI, Brown KM, Lynch JP (2003) Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol 131:1381–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Madany M, Khalil R (2017) Seed priming with ascorbic acid or calcium chloride mitigates the adverse effects of drought stress in sunflower (Helianthus annuus L.) seedlings. Egypt J Exp Biol (Bot) 13:119–133

    Google Scholar 

  43. Mahoney NM, Goshima G, Douglass AD, Vale RD (2006) Making microtubules and mitotic spindles in cells without functional centrosomes. Curr Biol 16:564–569

    Article  CAS  PubMed  Google Scholar 

  44. Malgorzata K, Olga FS, Katarzyna G, Agnieszka W, Jan S (2017) CaCl2 treatment improves drought stress tolerance in barley (Hordeum vulgare L.). Acta Physiol Plant 39:41. https://doi.org/10.1007/s11783-016-2336-y

    Article  Google Scholar 

  45. Metcalfe D, Schmitz A, Pelka RJ (1966) Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal Chem 38:524–535

    Article  Google Scholar 

  46. Mondal NK (2013) Effect of varying cadmium stress on chickpea (Cicer arietinum L.) seedlings: an ultrastructural study. Ann Environ Sci 7:59–70

    CAS  Google Scholar 

  47. Moussa HR, El-Gamal SM (2010) Effect of salicylic acid pretreatment on cadmium toxicity in wheat. Biol Plant 54:315–320

    Article  CAS  Google Scholar 

  48. Nguyen QT, Kisiala A, Andreas P, Neil Emery RJ, Narine S (2016) Soybean seed development: fatty acid and phytohormone metabolism and their interactions. Curr Genom 17:241–260

    Article  CAS  Google Scholar 

  49. Nocito FF, Lancilli C, Giacomini B, Sacchi GA (2007) Sulfur metabolism and cadmium stress in higher plants. Plant Stress 1:142–156

    Google Scholar 

  50. Nouairi I, Ammar WB, Youssef NB, Daoud DBM, Ghorbal MH, Zarrouk M (2006) Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci 170:511–519

    Article  CAS  Google Scholar 

  51. Parvaiz A, Arafet AAL, Elsayed FAA, Abeer H, Maryam S, Naser AA, Salih G (2016) Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front Plant Sci 7:513

    Google Scholar 

  52. Patlolla A, Tchounwou P (2005) Cytogenetic evaluation of arsenic trioxide in Sprague-Dawley rats. Mutat Res 587:126–133

    Article  CAS  PubMed  Google Scholar 

  53. Patrick L (2003) Toxic metals and antioxidants: part II. The role of antioxidants in arsenic and cadmium toxicity. Altern Med Rev 8:106–128

    PubMed  Google Scholar 

  54. Rahoui S, Chaoui A, El Ferjani E (2010) Membrane damage and solute leakage from germinating pea seed under cadmium stress. J Hazard Mater 178:1128–1131

    Article  CAS  PubMed  Google Scholar 

  55. Rajendra P, Sujatha NH, Sashidkar RB, Subramanyam C, Davendranath D, Gunasekaran B, Aradhya RSS, Bhaskaran A (2005) Effects of power frequency electromagnetic fields on growth of germinating Vicia faba L., the broad bean. Electromagn Biol Med 24:39–54

    Article  Google Scholar 

  56. Ranty B, Aldon D, Cotelle V, Galaud JP, Thuleau P, Mazars C (2016) Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front Plant Sci 7:327. https://doi.org/10.3389/fpls.2016.00327

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Río LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots: imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    Article  CAS  PubMed  Google Scholar 

  59. Schützendübel A, Schwanz P, Teichmann T, Langenfeld-Heyser GK, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol 127:887–898

    Article  PubMed  PubMed Central  Google Scholar 

  60. Seneviratne M, Rajakaruna N, Rizwan M, Madawala HMSP, Ok YS, Vithanage M (2017) Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review. Environ Geochem Health. https://doi.org/10.1007/s10653-017-0005-8

    Article  PubMed  Google Scholar 

  61. Sergiev L, Alexieva E, Karanov E (1997) Effect of spermine, atrazine and combination between them on some endogenous protective systems and markers in plants. C R Acad Bulg Sci 51:121–124

    Google Scholar 

  62. Seth CS, Misraa V, Chauhan LKS, Singh RR (2008) Genotoxicity of cadmium on root meristem cells of Allium cepa: cytogenetic and comet assay approach. Ecotoxicol Environ Saf 71:711–716

    Article  CAS  PubMed  Google Scholar 

  63. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:e217037

    Google Scholar 

  64. Sharma SS, Dietz KJ, Mimura T (2016) Vacuolar compartmentalization as indispensable component of heavy metal detoxiification in plants. Plant Cell Environ 39:1112–1126

    Article  CAS  PubMed  Google Scholar 

  65. Shi Q, Wang J, Zou J, Jiang Z, Wu H, Wang J, Jiang W, Liu D (2016) Cadmium localization and its toxic effects on root tips of barley. Zemdirbyste Agric 103:151–158

    Article  Google Scholar 

  66. Singh A, Prasad SM (2014) Effect of agro-industrial waste amendment on Cd uptake in Amaranthus caudatus grown under contaminated soil: an oxidative biomarker response. Ecotoxicol Environ Saf 100:105–113

    Article  CAS  PubMed  Google Scholar 

  67. Singh GS, Tuteja N (2011) Cadmium stress tolerance in crop plants: probing the role of sulfur. Plant Signal Behav 6:215–222

    Article  CAS  Google Scholar 

  68. Singh HP, Batish DR, Kaur G, Arora K, Kohli RK (2008) Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ Exp Bot 63:158–167

    Article  CAS  Google Scholar 

  69. Steinkellner H, Mun-Sik K, Helma C, Ecker S, Ma TH, Horak O, Kundi M, Knasmuller S (1998) Genotoxic effects of heavy metals: comparative investigation with plant bioassays. Environ Mol Mutag 31:183–191

    Article  CAS  Google Scholar 

  70. Tajti J, Janda T, Majláth I, Szalai G, Pál M (2018) Comparative study on the effects of putrescine and spermidine pretreatment on cadmium stress in wheat. Ecotoxicol Environ Saf 148:546–554

    Article  CAS  PubMed  Google Scholar 

  71. Tamimi MS (2016) Effect of seed priming on growth and physiological traits of five Jordanian wheat (Triticum aestivum L.) landraces under salt stress. J Biosci Agric Res 11:906–922

    Article  Google Scholar 

  72. Upadhyaya H, Panda SK, Dutta BK (2011) CaCl2 improves post-drought recovery potential in Camellia sinensis (L) O. Kuntze. Plant Cell Rep 30:495–503

    Article  CAS  PubMed  Google Scholar 

  73. Urbanek H, Kuzniak-Gebarowska E, Herka K (1991) Elicitation of defense responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Phys Plant 13:43–50

    CAS  Google Scholar 

  74. Vig K, Megharaj M, Sethunathan N, Naidu R (2003) Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv Environ Res 8:121–135

    Article  CAS  Google Scholar 

  75. Vitória AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57:710–715

    Article  Google Scholar 

  76. Wan G, Najeeb U, Jilani G, Naeemand MS, Zhou W (2011) Calcium invigorates the cadmium-stressed Brassica napus L. plants by strengthening their photosynthetic system. Environ Sci Pollut Res Int 18:1478–1486

    Article  CAS  PubMed  Google Scholar 

  77. Wang Y, Qian Y, Hu H, Xu Y, Zhang H (2011) Comparative proteomic analysis of Cd-responsive proteins in wheat roots. Acta Physiol Plant 33:349–357

    Article  CAS  Google Scholar 

  78. Xu J, Yin HX, Li YL, Liu XJ (2010) Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol 154:1319–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yacoubi R, Job C, Belghazi M, Chaibi W, Job D (2013) Proteomic analysis of the enhancement of seed vigour in osmoprimed alfalfa seeds germinated under salinity stress. Seed Sci Res 23:99–110

    Article  CAS  Google Scholar 

  80. Zhang Y, Yang X (1994) The toxic effects of cadmium on cell division and chromosomal morphology of Hordeum vulgare. Mutat Res 312:121–126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Affiliations

Authors

Contributions

IN: Assistant Professor, KJ and SE: PhD students, carried out the experimental work and performed all laboratory analyses. IN: conceived the study and wrote the first draft of manuscript. KZ: Associate Professor and HM: Professor, supervised the laboratory experiments and analyses. All authors contributed to the study and gave final approval to publish the manuscript in its current form.

Corresponding author

Correspondence to Issam Nouairi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nouairi, I., Jalali, K., Essid, S. et al. Alleviation of cadmium-induced genotoxicity and cytotoxicity by calcium chloride in faba bean (Vicia faba L. var. minor) roots. Physiol Mol Biol Plants 25, 921–931 (2019). https://doi.org/10.1007/s12298-019-00681-5

Download citation

Keywords

  • Cadmium
  • Genotoxicity
  • Membrane lipid
  • Oxidative stress
  • Roots
  • Seed priming