Skip to main content

Salinity stress in cotton: effects, mechanism of tolerance and its management strategies

Abstract

Cotton is classified as moderately salt tolerant crop with salinity threshold level of 7.7 dS m−1. Salinity is a serious threat for cotton growth, yield and fiber quality. The sensitivity to salt stress depends upon growth stage and type of salt. Understanding of cotton response to salinity, its resistance mechanism and looking into management techniques may assist in formulating strategies to improve cotton performance under saline condition. The studies have showed that germination, emergence and seedling stages are more sensitive to salinity stress as compared to later stages. Salt stress results in delayed flowering, less fruiting positions, fruit shedding and reduced boll weight which ultimately affect seed cotton yield. Depressed activities of metabolic enzymes viz: acidic invertase, alkaline invertase and sucrose phophate synthase lead to fiber quality deterioration in salinity. Excessive sodium exclusion or its compartmentation is the main adaptive mechanism in cotton under salt stress. Up regulation of enzymatic and non-enzymatic antioxidants genes offer important adaptive potential to develop salt tolerant cotton varieties. Seed priming is also an effective approach for improving cotton germination in saline soils. Intra and inter variation in cotton germplasm could be used to develop salt tolerant varieties with the aid of marker assisted selection. Furthermore, transgenic approach could be the promising option for enhancing cotton production under saline condition. It is suggested that future research may be carried out with the combination of conventional and advance molecular technology to develop salt tolerant cultivars.

This is a preview of subscription content, access via your institution.

References

  1. Abd Ella M, Shalaby EE (1993) Cotton response to salinity and different potassium-sodium ratio in irrigation water. J Agron Crop Sci 170:25–31

    Article  CAS  Google Scholar 

  2. Ahmad R, Abdullah Z (1982) Biomass production of food and fiber crops using highly saline water under desert conditions [irrigated cultivation of sugarbeets and cotton in Pakistan]. Env Sci Res 23:149–163

    CAS  Google Scholar 

  3. Ahmad S, Khan N, Iqbal MZ, Hussain A, Hassan M (2002) Salt tolerance of cotton (Gossypium hirsutum L.). Asian J Plant Sci 1:715–719

    Article  Google Scholar 

  4. Ahmadvand G, Soleymani F, Saadatian B, Pouya M (2012) Effects of seed priming on seed germination and seedling emergence of cotton under salinity stress. World Appl Sci J 20:1453–1458

    CAS  Google Scholar 

  5. Alam S, Ansari A, Khan M (2000) Nuclear Institute of Agriculture, Tando Jam. Available at http://www.pakistaneconomist.com/issue2000/issue19&20/i&e3.htm

  6. Anagholi A, Esmaeili S, Soltani V, Khaffarian H (2005) Effects of salt stress on the growth and yield of cotton at different stages of developmen. http://agris.fao.org/agris-search/search.do?recordID=IR2012039023

  7. Ansari R, Khan MA, Gul B (2007) Gainful utilization of salt affected lands: prospects and precautions. Crop Forage Prod Saline Waters 10:103–108

    Google Scholar 

  8. Anschütz U, Becker D, Shabala S (2014) Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J Plant Physiol 171:670–687

    Article  CAS  PubMed  Google Scholar 

  9. Arora S (2017) Diagnostic properties and constraints of salt-affected soils. In: Arora S, Singh AK, Singh YP (eds) Bioremediation of salt affected soils: an Indian perspective. Springer, pp 41–52

  10. Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  11. Ashraf M, Ahmad S (2000) Influence of sodium chloride on ion accumulation, yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.). Field Crops Res 66:115–127

    Article  Google Scholar 

  12. Ashraf M, Kanwal S, Tahir M, Sarwar A, Ali L (2007) Differential salt tolerance of sugarcane genotypes. Pak J Agric Sci 44:85–89

    Google Scholar 

  13. Aslam M, Basra S, Maqbool MA, Bilal H, UZaman Q, Bano S (2013) Physio-chemical distinctiveness and metroglyph analysis of cotton genotypes at early growth stage under saline hydroponics. Int J Agric Biol 15:11–1133

    CAS  Google Scholar 

  14. Bernstein L, Hayward H (1958) Physiology of salt tolerance. Annu Rev Plant Biol 9:25–46

    Article  CAS  Google Scholar 

  15. Bozcuk S (1981) Effects of kinetin and salinity on germination of tomato, barley and cotton seeds. Ann Bot 48:81–84

    Article  CAS  Google Scholar 

  16. Bradford KJ (1986) Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScience (USA) 21:1105–1112

    Google Scholar 

  17. Cai C, Wu S, Niu E, Cheng C, Guo W (2017) Identification of genes related to salt stress tolerance using intron-length polymorphic markers, association mapping and virus-induced gene silencing in cotton. Sci Rep 7:528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen X, Wang J, Zhu M, Jia H, Liu D, Hao L, Guo X (2015) A cotton Raf-like MAP3K gene, GhMAP3K40, mediates reduced tolerance to biotic and abiotic stress in Nicotiana benthamiana by negatively regulating growth and development. Plant Sci 240:10–24

    Article  CAS  PubMed  Google Scholar 

  19. Chen X et al (2017) GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana. PLoS ONE 12:e0181450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng C, Zhang Y, Chen X, Song J, Guo Z, Li K, Zhang K (2018) Co-expression of AtNHX1 and TsVP improves the salt tolerance of transgenic cotton and increases seed cotton yield in a saline field. Mol Breed 38:19

    Article  CAS  Google Scholar 

  21. Chu X et al (2015) The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS ONE 10:e0143022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Conde A, Chaves MM, Gerós H (2011) Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol 52:1583–1602

    Article  CAS  PubMed  Google Scholar 

  23. Czégény G, Wu M, Dér A, Eriksson LA, Strid Å, Hideg É (2014) Hydrogen peroxide contributes to the ultraviolet-B (280–315 nm) induced oxidative stress of plant leaves through multiple pathways. FEBS Lett 588:2255–2261

    Article  CAS  PubMed  Google Scholar 

  24. Dai J, Duan L, Dong H (2014) Improved nutrient uptake enhances cotton growth and salinity tolerance in saline media. J Plant Nutr 37:1269–1286

    Article  CAS  Google Scholar 

  25. Dhandapani G et al (2015) A gene encoding cold-circadian rhythm-RNA binding-like protein (CCR-Like) from upland Cotton (Gossypium hirsutum L.) confers tolerance to abiotic stresses in transgenic tobacco. Plant Mol Biol Rep Rep 33:22–42

    Article  CAS  Google Scholar 

  26. Ding M et al (2010) Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species. Plant Mol Biol 73:251–269

    Article  CAS  PubMed  Google Scholar 

  27. Dong H (2012) Combating salinity stress effects on cotton with agronomic practices. Afr J Agric Res 7:4708–4715

    Article  Google Scholar 

  28. Du L, Cai C, Wu S, Zhang F, Hou S, Guo W (2016) Evaluation and exploration of favorable QTL alleles for salt stress related traits in cotton cultivars (G. hirsutum L.). PLoS ONE 11:e0151076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. El Saidi M, Hegazy W (1980) Effect of using saline water for irrigation at different growth stages on yield and some physiological processes of cotton plant. Agric Res Rev 58:337–355

    Google Scholar 

  30. Fan X et al (2015) Transcriptome-wide identification of salt-responsive members of the WRKY gene family in Gossypium aridum. PLoS ONE 10:e0126148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fernandes F, Arrabaça M, Carvalho L (2004) Sucrose metabolism in Lupinus albus L. under salt stress. Biol Plantarum 48:317

    Article  CAS  Google Scholar 

  32. Foyer CH, Noctor G (2000) Tansley review no. 112 oxygen processing in photosynthesis: regulation and signalling. New Phytol 146:359–388

    Article  CAS  Google Scholar 

  33. Gao S-Q et al (2009) A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant cell Rep 28:301–311

    Article  CAS  PubMed  Google Scholar 

  34. Golan-Goldhirsh A, Hankamer B, Lips S (1990) Hydroxyproline and proline content of cell walls of sunflower, peanut and cotton grown under salt stress. Plant Sci 69:27–32

    Article  CAS  Google Scholar 

  35. Gong W, Xu F, Sun J, Peng Z, He S, Pan Z, Du X (2017) iTRAQ-based comparative proteomic analysis of seedling leaves of two upland cotton genotypes differing in salt tolerance. Front Plant Sci 8:2113

    Article  PubMed  PubMed Central  Google Scholar 

  36. Guo YH, Yu YP, Wang D, Wu CA, Yang GD, Huang JG, Zheng CC (2009) GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol 183:62–75

    Article  CAS  PubMed  Google Scholar 

  37. Guo-Wei Z, Hai-Ling L, Lei Z, Bing-Lin C, Zhi-Guo Z (2011) Salt tolerance evaluation of cotton (Gossypium hirsutum) at its germinating and seedling stages and selection of related indices. Yingyong Shengtai Xuebao 22:2045–2053

    Google Scholar 

  38. Higbie SM, Wang F, Stewart JM, Sterling TM, Lindemann WC, Hughs E, Zhang J (2010) Physiological response to salt (NaCl) stress in selected cultivated tetraploid cottons. Int J Agron 2010:1–12

    Article  CAS  Google Scholar 

  39. Higinbotham N (1973) Electropotentials of plant cells. Annu Rev Plant Physiol 24:25–46

    Article  CAS  Google Scholar 

  40. Hossain M (2010) Global warming induced sea level rise on soil, land and crop production loss in Bangladesh. In: 19th world congress of soil science, soil solutions for a changing world, Brisbane. http://www.ars.usda.gov/Services/docs.htm

  41. Jabeen R, Ahmad R (2009) Alleviation of the adverse effects of salt stress by foliar application of sodium antagonistic essential minerals on cotton (Gossypium hirsutum). Pak J Bot 41:2199–2208

    CAS  Google Scholar 

  42. Jafri AZ, Ahmad R (1995) Effect of soil salanity on leaf development, stomtal size and its distribution in cotton. Pak J Bot 27:297–303

    Google Scholar 

  43. Jamil A, Riaz S, Ashraf M, Foolad M (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458

    Article  Google Scholar 

  44. Jin LG, Li H, Liu JY (2010) Molecular characterization of three ethylene responsive element binding factor genes from cotton. J Integr Plant Biol 52:485–495

    CAS  PubMed  Google Scholar 

  45. Johnson KL, Jones BJ, Bacic A, Schultz CJ (2003) The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol 133:1911–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Joseph EA, Mohanan K (2013) A study on the effect of salinity stress on the growth and yield of some native rice cultivars of Kerala state of India. Agric For Fish 2:141–150

    Google Scholar 

  47. Kafi M, Moayedi A, Jafari M (2018) The sensitivity of grain Sorghum (Sorghum bicolor L.) developmental stages to salinity stress: an integrated approach. J Agric Sci Technol 15:723–736

    Google Scholar 

  48. Katerji N, Van Hoorn J, Hamdy A, Mastrorilli M (2000) Salt tolerance classification of crops according to soil salinity and to water stress day index. Agric Water Manag 43:99–109

    Article  Google Scholar 

  49. Keisham M, Mukherjee S, Bhatla S (2018) Mechanisms of sodium transport in plants—progresses and challenges. Int J Mol Sci 19:647

    Article  CAS  PubMed Central  Google Scholar 

  50. Kent L, Läuchli A (1985) Germination and seedling growth of cotton: salinity-calcium interactions Plant. Cell Environ 8:155–159

    Article  CAS  Google Scholar 

  51. Khan A, Qureshi R, Ahmad N (1995) Performance of cotton cultivars in saline growth media at germination stage. Sarhad J Agric 11:643–646

    Google Scholar 

  52. Khan A, Qureshi R, Ahmad N (1998a) Performance of cotton cultivars as affected by types of salinity I, Growth and yield. Sarhad J Agric 14:73–77

    Google Scholar 

  53. Khan MA, Ungar IA, Showalter AM, Dewald HD (1998b) NaCl-induced accumulation of glycinebetaine in four subtropical halophytes from Pakistan. Physiol Plant 102:487–492

    Article  CAS  Google Scholar 

  54. Khorsandi F, Anagholi A (2009) Reproductive compensation of cotton after salt stress relief at different growth stages. J Agron Crop Sci 195:278–283

    Article  Google Scholar 

  55. Kong X, Luo Z, Zhang Y, Li W, Dong H (2017) Soaking in H2O2 regulates ABA biosynthesis and GA catabolism in germinating cotton seeds under salt stress. Acta Physiol Plant 39:2

    Article  CAS  Google Scholar 

  56. Lee EK, Kwon M, Ko J-H, Yi H, Hwang MG, Chang S, Cho MH (2004) Binding of sulfonylurea by AtMRP5, an Arabidopsis multidrug resistance-related protein that functions in salt tolerance. Plant Physiol 134:528–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee MH et al (2013) Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress. Plant Physiol Biochem 70:325–335

    Article  CAS  PubMed  Google Scholar 

  58. Leidi EO (1994) Genotypic variation of cotton in response to stress by NaCl or PEG. In: Peeters MC (ed) Cotton biotechnology, REUR technical series, vol 32. FAO, Rome, pp 67–73

    Google Scholar 

  59. Leidi E, Saiz J (1997) Is salinity tolerance related to Na accumulation in upland cotton (Gossypium hirsutum) seedlings? Plant Soil 190:67–75

    Article  CAS  Google Scholar 

  60. Li G, Tai F-J, Zheng Y, Luo J, Gong S-Y, Zhang Z-T, Li X-B (2010) Two cotton Cys2/His2-type zinc-finger proteins, GhDi19-1 and GhDi19-2, are involved in plant response to salt/drought stress and abscisic acid signaling. Plant Mol Biol 74:437–452

    Article  CAS  PubMed  Google Scholar 

  61. Li Q, Xiao G, Zhu Y-X (2014) Single-nucleotide resolution mapping of the Gossypium raimondii transcriptome reveals a new mechanism for alternative splicing of introns. Mol Plant 7:829–840

    Article  CAS  PubMed  Google Scholar 

  62. Li W et al (2015) Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. Front Plant Sci 6:732

    PubMed  PubMed Central  Google Scholar 

  63. Liang C et al (2016) GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci Rep 6:35040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS ONE 9:e86895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu X, Song Y, Xing F, Wang N, Wen F, Zhu C (2016) GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma 253:1265–1281

    Article  CAS  PubMed  Google Scholar 

  66. Longenecker D (1974) The influence of high sodium in soils upon fruiting and shedding, boll characteristics, fiber properties, and yields of two cotton species. Soil Sci 118:387–396

    Article  CAS  Google Scholar 

  67. Lu W, Chu X, Li Y, Wang C, Guo X (2013) Cotton GhMKK1 induces the tolerance of salt and drought stress, and mediates defence responses to pathogen infection in transgenic Nicotiana benthamiana. PLoS ONE 8:e68503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Luo X et al (2013) Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. PLoS ONE 8:e54002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Luo Z, Kong X, Dai J, Dong H (2015) Soil plus foliar nitrogen application increases cotton growth and salinity tolerance. J Plant Nutr 38:443–455

    Article  CAS  Google Scholar 

  70. Lv S, Yin X, Zhang K, Zhang J (2004) Agrobacterium-mediated transformation of shoot apex of cotton and production of transgenic plants carrying betA gene. Gaojishu Tongxun 14:20–25

    CAS  Google Scholar 

  71. Ma X, Dong H, Li W (2011) Genetic improvement of cotton tolerance to salinity stress. Afr J Agric Res 6:6797–6803

    Google Scholar 

  72. Ma L, Hu L, Fan J, Amombo E, Khaldun A, Zheng Y, Chen L (2017) Cotton GhERF38 gene is involved in plant response to salt/drought and ABA. Ecotoxicology 26:841–854

    Article  CAS  PubMed  Google Scholar 

  73. Maas EV, Hoffman GJ (1977) Crop salt tolerance–current assessment. J Irrig Drain Div 103:115–134

    Google Scholar 

  74. Manchandia AM, Banks SW, Gossett DR, Bellaire BA, Lucas MC, Millhollon EP (1999) The influence of α-amanitin on the NaCl-induced up-regulation of antioxidant enzyme activity in cotton callus tissue. Free Radic Res 30:429–438

    Article  CAS  PubMed  Google Scholar 

  75. Mansour M, Salama K, Ali F, Abou Hadid A (2005) Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. Gen Appl Plant Physiol 31:29–41

    CAS  Google Scholar 

  76. Meloni DA, Oliva MA, Ruiz HA, Martinez CA (2001) Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J Plant Nutr 24:599–612

    Article  CAS  Google Scholar 

  77. Meng C, Cai C, Zhang T, Guo W (2009) Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L. Plant Sci 176:352–359

    Article  CAS  Google Scholar 

  78. Meng H-B, Jiang S-S, Hua S-J, Lin X-Y, Li Y-L, Guo W-L, Jiang L-X (2011) Comparison between a tetraploid turnip and its diploid progenitor (Brassica rapa L.): the adaptation to salinity stress. Agric Sci China 10:363–375

    Article  Google Scholar 

  79. Mojid M, Mia M, Saha A, Tabriz S (2013) Growth stage sensitivity of wheat to irrigation water salinity. J Bangladesh Agric Univ 11:147–152

    Article  Google Scholar 

  80. Naidoo G, Naidoo Y (2001) Effects of salinity and nitrogen on growth, ion relations and proline accumulation in Triglochin bulbosa. Wetl Ecol Manag 9:491–497

    Article  CAS  Google Scholar 

  81. Noreen Z, Ashraf M (2009) Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J Plant Physiol 166:1764–1774

    Article  CAS  PubMed  Google Scholar 

  82. Oluoch G et al (2016) QTL mapping for salt tolerance at seedling stage in the interspecific cross of Gossypium tomentosum with Gossypium hirsutum. Euphytica 209:223–235

    Article  CAS  Google Scholar 

  83. Pasapula V et al (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9:88–99

    Article  CAS  PubMed  Google Scholar 

  84. Peng J et al (2016a) Effects of soil salinity on sucrose metabolism in cotton leaves. PLoS ONE 11:e0156241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Peng J et al (2016b) Effects of Soil Salinity on Sucrose Metabolism in Cotton Fiber. PLoS ONE 11:e0156398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pervaiz S, Saqib M, Akhtar J, Riaz MA, Anwar-ul-Haq M, Nasim M (2007) Comparative growth and leaf ionic composition of four cotton (Gossypium hirsutum L.) genotypes in response to salinity. Pak J Agri Sci 44:15–20

    Google Scholar 

  87. Quan RD, Shang M, Zhang H, ZhaoY ZJ (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486

    Article  CAS  PubMed  Google Scholar 

  88. Rady M, El-Mageed TA, Abdurrahman H, Mahdi A (2016) Humic acid application improves field performance of cotton (Gossypium barbadense L.) under saline conditions. J Animal Plant Sci 26:485–493

    Google Scholar 

  89. Rafique A, Salim M, Hussain M, Gelani S (2003) Morpho-physiological response of cotton (Gossypium hirsutum L.) cultivars to variable edaphic conditions. Pak J Life Soc Sci 1:5–8

    Google Scholar 

  90. Rajguru SN, Banks SW, Gossett DR, Lucas MC, Fowler TE, Millhollon EP (1999) Antioxidant response to salt stress during fiber development in cotton ovules. J Cotton Sci 3(1):11–18

    CAS  Google Scholar 

  91. Rathert G (1983) Effects of high salinity stress on mineral and carbohydrate metabolism of two cotton varieties. Plant Soil 73:247–256

    Article  CAS  Google Scholar 

  92. Rathert G, Doering H (1983) Influence of extreme K: Na ratios and high substrate salinity on plant metabolism of crops differing in salt tolerance: VIII. Ion-specific salinity effects on carbohydrates and degradative enzymes of two soybean varieties. J Plant Nutr 6:583–595

    Article  CAS  Google Scholar 

  93. Richards LA (1954) Diagnosis and improvement of saline alkali soils, vol 60. US Department of Agriculture Handbook, Washington

    Google Scholar 

  94. Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4:49–56

    Article  CAS  PubMed  Google Scholar 

  95. Saddiqe Z, Javeria S, Khalid H, Farooq A (2016) Effect of salt stress on growth and antioxidant enzymes in two cultivars of maize (Zea mays l.). Pak J Bot 48:1361–1370

    CAS  Google Scholar 

  96. Saeed M, Wangzhen G, Tianzhen Z (2014) Association mapping for salinity tolerance in cotton (‘Gossypium hirsutum’ L.) germplasm from US and diverse regions of China. Aust J Crop Sci 8:338

    CAS  Google Scholar 

  97. Saqib M, Akhtar J, Pervaiz S, Qureshi R, Aslam M (2002) Comparative growth performance of five cotton (Gossypium hirsutum L.) genotypes against different levels of salinity. Pak J Agri Sci 39:69–75

    Google Scholar 

  98. Sattar S, Hussnain T, Javaid A (2010) Effect of NaCl salinity on cotton (Gossypium arboreum L.) grown on MS medium and in hydroponic cultures. J Animal Plant Sci 20:87–89

    Google Scholar 

  99. Seemann JR, Sharkey TD (1986) Salinity and nitrogen effects on photosynthesis, ribulose-1, 5-bisphosphate carboxylase and metabolite pool sizes in Phaseolus vulgaris L. Plant Physiol 82:555–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shabala SN, Lew RR (2002) Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129:290–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shah ST, Pang C, Fan S, Song M, Arain S, Yu S (2013) Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses. Gene 531:220–234

    Article  CAS  PubMed  Google Scholar 

  102. Shah S, Houborg R, McCabe M (2017) Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy 7:61

    Article  CAS  Google Scholar 

  103. Shaheen HL, Shahbaz M, Ullah I, Iqbal MZ (2012) Morpho-physiological responses of cotton (Gossypium hirsutum L.) to salt stress. Int J Agric Biol 14:980–984

    Google Scholar 

  104. Shaheen HL, Iqbal M, Azeem M, Shahbaz M, Shehzadi M (2016) K-priming positively modulates growth and nutrient status of salt-stressed cotton (Gossypium hirsutum) seedlings. Arch Agron Soil Sci 62:759–768

    Article  CAS  Google Scholar 

  105. Sharif A, Rasul E, Nisar A, Sadiq M (1999) Response of Maize (Zea mays L.) genotypes to NaCI salinity induced at various growth stages of crop. Pak J Bio Sci 2:606–608

    Article  Google Scholar 

  106. Shi W, Hao L, Li J, Liu D, Guo X, Li H (2014a) The Gossypium hirsutum WRKY gene GhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana. Plant Cell Rep 33:483–498

    Article  CAS  PubMed  Google Scholar 

  107. Shi W, Liu D, Hao L, C-a W, Guo X, Li H (2014b) GhWRKY39, a member of the WRKY transcription factor family in cotton, has a positive role in disease resistance and salt stress tolerance. PCTOC 118:17–32

    Article  CAS  Google Scholar 

  108. Silberbush M, Ben-Asher J (1987) The effect of salinity on parameters of potassium and nitrate uptake of cotton. Commun Soil Sci Plant Anal 18:65–81

    Article  CAS  Google Scholar 

  109. Simoes WL, Calgaro M, Coelho DS, Santos D, Souza M (2016) Growth of sugar cane varieties under salinity. Rev Ceres 63:265–271

    Article  Google Scholar 

  110. Soliman M, Farah M, Anter I (1980) Seed germination and root growth of corn and cotton seedlings as affected by soil texture and salinity of irrigation water. Agrochimica 24:113–120

    Google Scholar 

  111. Sta-Baba R, Hachicha M, Mansour M, Nahdi H, Kheder MB (2010) Response of onion to salinity. Afr J Plant Sci Biotechnol 4:7–12

    Google Scholar 

  112. Sun Z et al (2018) Identification of SNPs and candidate genes associated with salt tolerance at the seedling stage in cotton (Gossypium hirsutum L.). Front Plant Sci 9:1–12

    Article  Google Scholar 

  113. Theodoulou FL (2000) Plant ABC transporters. Biochimica et Biophysica Acta (BBA)-Biomembranes 1465:79–103

    Article  CAS  Google Scholar 

  114. Thomas J (1980) Osmotic and specific salt effects on growth of cotton 1. Agron J 72:407–412

    Article  CAS  Google Scholar 

  115. Wang J, Wang D, Fan W, Song G, Wang S, Ye W (2011) The characters of salt-tolerance at different growth stages in cotton. Shengtai Xuebao Acta Ecol Sin 31:3720–3727

    Google Scholar 

  116. Wang Z et al (2012) QTL analysis of Na+ and K+ concentrations in roots and shoots under different levels of NaCl stress in rice (Oryza sativa L.). PLoS ONE 7:51202

    Article  CAS  Google Scholar 

  117. Wang W et al (2016) Characterization, expression, and functional analysis of a novel NAC gene associated with resistance to Verticillium Wilt and abiotic stress in cotton. G3 (Bethesda) 6:3951–3961

    Article  CAS  Google Scholar 

  118. Wang N et al (2017) Relative contribution of Na+/K+ homeostasis, photochemical efficiency and antioxidant defense system to differential salt tolerance in cotton (Gossypium hirsutum L.) cultivars. Plant Physiol Biochem 119:121–131

    Article  CAS  PubMed  Google Scholar 

  119. Wu C-A, Yang G-D, Meng Q-W, Zheng C-C (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45:600–607

    Article  CAS  PubMed  Google Scholar 

  120. Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C (2008) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot 60:339–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yfoulis A, Fasoulas A (1973) Interactions of genotype and temperature on cotton boll period and their implication in breeding. Exp Agric 9:193–201

    Article  Google Scholar 

  122. Yu LH et al (2016) Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J 14:72–84

    Article  CAS  PubMed  Google Scholar 

  123. Zhang H, Dong H, Li W, Sun Y, Chen S, Kong X (2009) Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Mol Breed 23:289–298

    Article  CAS  Google Scholar 

  124. Zhang L et al (2011) A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol Biol 77:17–31

    Article  CAS  PubMed  Google Scholar 

  125. Zhang L, Zhang G, Wang Y, Zhou Z, Meng Y, Chen B (2013) Effect of soil salinity on physiological characteristics of functional leaves of cotton plants. J Plant Res 126:293–304

    Article  CAS  PubMed  Google Scholar 

  126. Zhang L, Ma H, Chen T, Pen J, Yu S, Zhao X (2014) Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS ONE 9:e112807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang F, Li S, Yang S, Wang L, Guo W (2015) Overexpression of a cotton annexin gene, GhAnn1, enhances drought and salt stress tolerance in transgenic cotton. Plant Mol Biol 87:47–67

    Article  CAS  PubMed  Google Scholar 

  128. Zhang F et al (2016) Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species Gossypium davidsonii. Sci Rep 6:20582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang B, Chen X, Shu X, Lu N, Wang X, Yang X, Ye W (2018) Transcriptome analysis of Gossypium hirsutum L. reveals different mechanisms among NaCl, NaOH and Na2CO3 stress tolerance. Sci Rep 8:13527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhao Q, Zhang H, Wang T, Chen S, Dai S (2013) Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteom 82:230–253

    Article  CAS  Google Scholar 

  131. Zhao Y et al (2016) SSR-based association mapping of salt tolerance in cotton (Gossypium hirsutum L.). GMR 15:15027370

    Google Scholar 

  132. Zhou L, Wang N-N, Kong L, Gong S-Y, Li Y, Li X-B (2014) Molecular characterization of 26 cotton WRKY genes that are expressed differentially in tissues and are induced in seedlings under high salinity and osmotic stress. PCTOC 119:141–156

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iram Sharif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharif, I., Aleem, S., Farooq, J. et al. Salinity stress in cotton: effects, mechanism of tolerance and its management strategies. Physiol Mol Biol Plants 25, 807–820 (2019). https://doi.org/10.1007/s12298-019-00676-2

Download citation

Keywords

  • Cotton
  • Functional genomic
  • Ion homeostasis
  • Salinity
  • Seed priming
  • Germination