Skip to main content

Characterization of genetic diversity and population structure of Moroccan lentil cultivars and landraces using molecular markers

Abstract

Knowledge of genetic diversity and population structure is a crucial step for an efficient use of available material in a plant breeding program and for germplasm conservation strategies. Current study undertakes an assessment of the genetic variations and population structure of Moroccan lentil including nine landraces and eight released varieties using sequence-related amplified polymorphism (SRAP) and random amplified polymorphism DNA (RAPD) markers. Results revealed that the two markers used have a good efficiency to assess genetic diversity in lentil. A total of 115 and 90 bands were respectively scored for SRAP and RAPD, of which 98.3% and 93.3% were polymorphic. The polymorphic information content values were 0.350 with SRAP and 0.326 with RAPD. Analysis of molecular variance based on the combined data sets of both markers revealed lower variations within (35%) than among (65%) landraces (PhiPT = 0.652), implying significant genetic differentiation between landraces. Principal coordinate analysis and the ascendant hierarchical classification clustered samples into groups that were consistent with the geographical origin of the cultivars. Population structure corroborated the main groups and confirmed the high differentiation among them. Moroccan lentil germplasm showed a wide genetic diversity that might be conserved and assessed for tolerance to biotic and abiotic stresses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abd El Moneim AM, Ryan J (2004) Forage legumes for dryland agriculture in Central and West Asia and North Africa. In: Rao, Ryan J (eds) Challenges and strategies of dryland agriculture, crop science. Society of America and American Society of Agronomy, Madison, pp 243–256

    Google Scholar 

  2. Abo-elwafa A, Murai K, Shimada T (1995) Intra- and inter-specific variations in Lens revealed by RAPD markers. Theor Appl Genet 90:335–340

    Article  CAS  PubMed  Google Scholar 

  3. Ahmad M, McNeil DL (1996) Comparison of crossability, RAPD, SDS-PAGE and morphological markers for revealing genetic relationships within and among Lens species. Theor Appl Genet 93:788–793

    Article  CAS  PubMed  Google Scholar 

  4. Alghamdi SS, Khan AM, Ammar MH, El-Harty EH, Migdadi HM, El-Khalik SM, Al-Shameri AM, Javed MM, Al-Faifi SA (2014) Phenological, nutritional and molecular diversity assessment among 35 introduced lentil (Lens culinaris Medik.) genotypes grown in Saudi Arabia. Int J Mol Sci 15:277–295

    Article  CAS  Google Scholar 

  5. Arber W, Illmensee K, Peacock WJ, Starlinger P (1984) Genetic manipulation: impact on man and society. Cambridge University Press, Cambridge

    Google Scholar 

  6. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  7. Benbrahim N, Taghouti M, Zouahri A, Gaboun F (2017) On-farm conservation of Zaer lentil landrace in context of climate change and improved varieties competition. Univ J Agric Res 5:27–38

    Google Scholar 

  8. Bermejo C, Gatti I, Caballero N, Cravero V, Martin E, Cointry E (2014) Study of diversity in a set of lentil RILs using morphological and molecular markers. Aust J Crop Sci 8:689–696

    CAS  Google Scholar 

  9. Boye J, Zare F, Pletch A (2010) Pulse proteins: processing, characterization, functional properties and applications in food and feed. Food Res Int 43:414–431

    Article  CAS  Google Scholar 

  10. Cubero JI, Pérez de la Vega M, Fratini R (2009) Origin, phylogeny, domestication and spread. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) The lentil: botany, production and uses. CAB International, Wallingford, pp 13–33

    Chapter  Google Scholar 

  11. Devendra C (1997) Crop residues for feeding animals in Asia: technology development and adoption in crop/livestock systems. CAB International, Wallingford

    Google Scholar 

  12. Erskine W, Muehlbauer FJ (1991) Allozyme and morphological variability, outcrossing rate and core collection formation in lentil germplasm. Theor Appl Genet 83:119–125

    Article  CAS  PubMed  Google Scholar 

  13. Erskine W, Rihawi S, Capper BS (1990) Variation in lentil straw quality. Anim Feed Sci Technol 28:61–69

    Article  Google Scholar 

  14. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  15. Idrissi O, Udupa SM, Houasli C, De Keyser E, Van Damme P, De Riek J (2015) Genetic diversity analysis of Moroccan lentil (Lens culinaris Medik.) landraces using Simple Sequence Repeat and amplified fragment length polymorphisms reveals functional adaptation towards agro-environmental origins. Plant Breed 134:322–332

    Article  Google Scholar 

  16. Idrissi O, Udupa MS, De Keyser E, Van Damme P, De Riek J (2016) Functional genetic diversity analysis and identification of associated simple sequence repeats and amplified fragment length polymorphism markers to drought tolerance in lentil (Lens culinaris ssp. culinaris Medicus) landraces. Plant Mol Biol Rep 34:659–680

    Article  CAS  Google Scholar 

  17. Joshi M, Aldred P, McKnight S, Panozzo JF, Kasapis S, Adhikari R, Adhikari B (2013) Physicochemical and functional characteristics of lentil starch. Carbohydr Polym 92:1484–1496

    Article  CAS  PubMed  Google Scholar 

  18. Keify F, Beiki AH (2012) Exploitation of random amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) markers for genetic diversity of saffron collection. J Med Plants Res 6:2761–2768

    CAS  Google Scholar 

  19. Khazaei H, Street K, Bari A, Mackay M, Stoddard FL (2013) The FIGS (Focused Identification of Germplasm Strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. PLoS ONE 8:e63107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Khazaei H, Caron CT, Fedoruk M, Diapari M, Vandenberg A, Coyne CJ, McGee R, Bett KE (2016) Genetic diversity of cultivated lentil (Lens culinaris Medik.) and its relation to the world’s agro-ecological zones. Front Plant Sci 7:1093

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kumar J, Gupta S, Dubey S, Gupta P, Gupta DS, Singh NP (2018) Genetic diversity changes in Indian lentils over the times. J Plant Biochem Biotechnol 27:415–424

    Article  CAS  Google Scholar 

  22. Ladizinsky G (1979) Species relationships in the genus Lens as indicated by seed-protein electrophoresis. Bot Gaz 140:449–451

    Article  Google Scholar 

  23. Lardy G, Anderson V (2009) Alternative feeds for ruminants. NDSU, Fargo

    Google Scholar 

  24. Lassner MW, Peterson P, Yoder JI (1989) Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny. Plant Mol Biol Rep 7:116–128

    Article  CAS  Google Scholar 

  25. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  26. Lombardi M, Materne M, Cogan NO, Rodda M, Daetwyler HD, Slater AT, Forster JW, Kaur S (2014) Assessment of genetic variation within a global collection of lentil (Lens culinaris Medik) cultivars and landraces using SNP markers. BMC Genet 15:150

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marić S, Bolarić S, Martinčić J, Pejić I, Kozumplik V (2004) Genetic diversity of hexaploid wheat cultivars estimated by RAPD markers, morphological traits and coefficients of parentage. Plant Breed 123:366–369

    Article  Google Scholar 

  28. Mbasani-Mansi J, Briache FZ, Ennami M, Gaboun F, Benbrahim N, Triqui ZEA, Mentag R (2019) Resistance of Moroccan lentil genotypes to Orobanche crenata infestation. J Crop Improv 33(3):306–326

    Article  CAS  Google Scholar 

  29. Migliozzi M, Thavarajah D, Thavarajah P, Smith P (2015) Lentil and kale: complementary nutrient-rich whole food sources to combat micronutrient and calorie malnutrition. Nutrients 7:9285–9298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peakall ROD, Smouse PE (2006) GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  31. Pinkas R, Zamir D, Ladizinsky G (1985) Allozyme divergence and evolution in the genus Lens. Plant Syst Evol 151:131–140

    Article  Google Scholar 

  32. Prakesh V, Tandon J, Prasad K (1986) Studies on intercropping rainfed wheat. Ann Agric Sci 7:258–262

    Google Scholar 

  33. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rana MK, Kumari R, Singh S, Bhat KV (2013) Genetic analysis of indian lentil (Lens culinaris Medikus) cultivars and landraces using RAPD and STMS markers. J Plant Biochem Biotechnol 16:53–57

    Article  Google Scholar 

  35. Roldán-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, De Loose M (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6(2):125–134

    Article  Google Scholar 

  36. Sexton JP, Hangartner SB, Hoffmann AA (2014) Genetic isolation by environment or distance: Which pattern of gene flow is most common? Evolution 68:1–15

    Article  CAS  PubMed  Google Scholar 

  37. Seyedimoradi H, Talebi R (2014) Detecting DNA polymorphism and genetic diversity in lentil (Lens culinaris Medik.) germplasm: comparison of ISSR and DAMD marker. Physiol Mol Biol Plants 20:495–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shah Z, Shah SH, Peoples MB, Schwenke GD, Herridge DF (2003) Crop residue and fertiliser N effects on nitrogen fixation and yields of legume—cereal rotations and soil organic fertility. Front Plant Sci 83:1–11

    Google Scholar 

  39. Solanki IS, Kapoor AC, Singh U (1999) Nutritional parameters and yield evaluation of newly developed genotypes of lentil (Lens culinaris Medik.). Plant Foods Hum Nutr 54:79–87

    Article  CAS  PubMed  Google Scholar 

  40. Sonnante G, Pignone D (2001) Assessment of genetic variation in a collection of lentil using molecular tools. Euphytica 120:301–307

    Article  CAS  Google Scholar 

  41. Sonnante G, Pignone D (2007) The major Italian landraces of lentil (Lens culinaris Medik.): their molecular diversity and possible origin. Genet Resour Crop Evol 54:1023–1031

    Article  Google Scholar 

  42. Tewari K, Dikshit HK, Jain N, Kumari J, Singh D (2012) Genetic differentiation of wild and cultivated Lens based on molecular markers. J Plant Biochem Biotechnol 21:198–204

    Article  Google Scholar 

  43. Toklu F, Karaköy T, Haklı E, Bicer T, Brandolini A, Kilian B, ÖZkan H (2009) Genetic variation among lentil (Lens culinaris Medik) landraces from Southeast Turkey. Plant Breed 128:178–186

    Article  Google Scholar 

  44. Torricelli R, Silveri DD, Ferradini N, Venora G, Veronesi F, Russi L (2012) Characterization of the lentil landrace Santo Stefano di Sessanio from Abruzzo, Italy. Genet Resour Crop Evol 59:261–276

    Article  Google Scholar 

  45. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. XLSTAT (2017) Data analysis and statistical solution for microsoft excel. Addinsoft, Paris

    Google Scholar 

  47. Yin Y, Liu Y, Li H, Zhao S, Wang S, Liu Y, Wu D, Xu F (2014) Genetic diversity of Pleurotus pulmonarius revealed by RAPD, ISSR, and SRAP fingerprinting. Curr Microbiol 68:397–403

    Article  CAS  PubMed  Google Scholar 

  48. Yüzbaşıoğlu E, Özcan S, Açık L (2006) Analysis of genetic relationships among Turkish cultivars and breeding lines of Lens culinatis Medik. using RAPD markers. Genet Resour Crop Evol 53:507–514

    Article  CAS  Google Scholar 

  49. Zaccardelli M, Lupo F, Piergiovanni AR, Laghetti G, Sonnante G, Daminati MG, Sparvoli F, Lioi L (2012) Characterization of Italian lentil (Lens culinaris Medik.) germplasm by agronomic traits, biochemical and molecular markers. Genet Resour Crop Ev 59:727–738

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Institute of Agricultural Research (INRA-Morocco) and Ministry of Higher Education, Scientific Research and Professional Training of Morocco (MESRSFC) through funding of MEDILEG Project within the European Union 7th Framework program for research, technological development and demonstration (ERA-Net Project, ARIMNet).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rachid Mentag.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Supplementary material 2 (DOCX 43 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mbasani-Mansi, J., Ennami, M., Briache, F.Z. et al. Characterization of genetic diversity and population structure of Moroccan lentil cultivars and landraces using molecular markers. Physiol Mol Biol Plants 25, 965–974 (2019). https://doi.org/10.1007/s12298-019-00673-5

Download citation

Keywords

  • Genetic diversity
  • Lens culinaris Medik.
  • Morocco
  • RAPD
  • SRAP
  • Population structure