Skip to main content

24-epibrassinolide and spermidine alleviate Mn stress via the modulation of root morphology, stomatal behavior, photosynthetic attributes and antioxidant defense in Brassica juncea

Abstract

Brassinosteroids and polyamines are generally used to surpass different abiotic stresses like heavy metal toxicity in plants. The current study was conducted with an aim that 24-epibrassinolide (EBL) and/or spermidine (Spd) could modify root morphology, movement of stomata, cell viability, photosynthetic effectiveness, carbonic anhydrase and antioxidant enzyme activities in Brassica juncea under manganese (Mn) stress (30 or 150 mg kg−1 soil). EBL (10−8 M) and/or Spd, (1.0 mM) were applied to the foliage of B. juncea plants at 35 days after sowing (DAS), grown in the presence of Mn (30 or 150 mg kg−1 soil). High Mn concentration (150 mg kg−1 soil) altered root morphology, affected stomatal movement, reduced the viability of cells and photosynthetic effectiveness and increased the production of reactive oxygen species (O ·−2 and H2O2) in the leaves and antioxidant defense system of B. juncea at 45 DAS. Furthermore, exogenous treatment of EBL and Spd under stress and stress- free conditions improved the aforesaid traits while decreased the O ·−2 and H2O2 production. Therefore, EBL and Spd could be applied to the foliage of B. juncea plants for the better growth under metal stress.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

ABA:

Abscisic acid

ANOVA:

Analysis of variance

BR:

Brassinosteroid

CA:

Carbonic anhydrase

CAT:

Catalase

Cd:

Cadmium

Ci:

Intercellular CO2 concentration

Cu:

Copper

DAS:

Days after sowing

DDW:

Double distilled water

E:

Transpiration rate

EBL:

24-epibrassinolide

EC:

Electron conductivity

EL:

Electrolyte leakage

Fe:

Iron

gs:

Stomatal conductance

HBL:

28-homobrassinolide

HM:

Heavy metals

LSD:

Least significant difference

Mn:

Manganese

NR:

Nitrate reductase

Ni:

Nickel

PA:

Polyamines

POX:

Peroxidase

ROS:

Reactive oxygen species

SA:

Salicylic acid

SEM:

Scanning electron microscopy

SOD:

Superoxide dismutase

Spd:

Spermidine

SPAD:

Soil and plant analysis development

Zn:

Zinc

References

  1. Abou M, Symeonidis L, Hatzistavrou E, Yupsanis T (2002) Nucleolytic activities and appearance of a new DNase in relation to nickel and manganese accumulation in Alyssum murale. J Plant Physiol 159:1087–1095

    Article  Google Scholar 

  2. Adrees M, Ali S, RizwanM Ibrahim M, Abbas F, Farid M, Zia-ur-Rehman M, Irshad MK, Bharwana SA (2015a) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162

    Article  CAS  Google Scholar 

  3. Adrees M, Ali S, Rizwan M, Rehman MZ, Ibrahim M, Abbas F, Farid M, Qayyum MK, Irshad MK (2015b) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    Article  CAS  PubMed  Google Scholar 

  4. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  5. Aravind P, Prasad MNV (2005) Cadmium–Zinc interactions in a hydroponic system using Ceratophyllum demersum L. adaptive ecophysiology, biochemistry and molecular toxicology. Braz J Plant Physiol 17(1):3–20

    Article  CAS  Google Scholar 

  6. Bais HP, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell, Tissue Organ Cult 69:1–34

    Article  CAS  Google Scholar 

  7. Bajguz A (2000) Effects of brassinosteroids on nucleicacids and protein in cultured cells in Chlorella vulgaris. Plant Physiol Biochem 38:209–215

    Article  CAS  Google Scholar 

  8. Bajguz A, Hayat S (2009) Effect of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  CAS  PubMed  Google Scholar 

  9. Bajguz A, Piotrowska-Niczyporuk A (2014) Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem 80:176–183

    Article  CAS  PubMed  Google Scholar 

  10. Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  11. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem Rev 44:276–287

    Article  CAS  Google Scholar 

  12. Choudhary SP, Kanwar M, Bhardwaj R, Yu JQ, Tran LSP (2012a) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS ONE 7(3):e33210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choudhary SP, Oral HV, Bhardwaj R, Yu JQ, Tran LS (2012b) Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. J Exp Bot 63(15):5659–5675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dalyan E, Yüzbaşıoğlu E, Akpınar I (2018) Effect of 24-epibrassinolide on antioxidative defence system against lead-induced oxidative stress in the roots of Brassica juncea L. seedlings. Russ J Plant Physiol 65(4):570–578

    Article  CAS  Google Scholar 

  15. Dwivedi RS, Randhawa NS (1974) Evolution of a rapid test for hidden hunger of zinc in plants. Plant Soil 40:445451

    Article  Google Scholar 

  16. Fariduddin Q, Khanam S, Hasan SA, Ali B, Hayat S, Ahmad A (2009) Effect of 28homobrassinolide on drought stress induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol Plant 31:889–897

    Article  CAS  Google Scholar 

  17. Fariduddin Q, Yusuf M, Ahmad I, Ahmad A (2014) Brassinosteroids and their role in response of plants to abiotic stresses. Biol Plant 58:9–17

    Article  CAS  Google Scholar 

  18. Fariduddin Q, Ahmed Mir BA, Yusuf M, Khan TA (2015) 24-Epibrassinolide mitigates the adverse effects of manganese induced toxicity through improved antioxidant system and photosynthetic attributes in Brassica juncea. Environ Sci Pollut Res 22:11349–11359

    Article  CAS  Google Scholar 

  19. Fernando DR, Lynch JP (2015) Manganese phytotoxicity: new light on an old problem. Ann Bot 116(3):313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao S, Ouyang C, Wang S, Xu Y, Tang L, Chen F (2008) Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonialyase activities in Jatropha curcas L. seedlings. Plant Soil Environ 54:374–381

    Article  CAS  Google Scholar 

  21. Goussias C, Boussac A, Rutherford AW (2002) Photosystem II and photosynthetic oxidation of water: an overview. Philos Trans R Soc Lond B 57:1369–1381

    Article  CAS  Google Scholar 

  22. Groppa MD, Ianuzzo MP, Tomaro ML, Benavides MP (2007) Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids 32:265–275

    Article  CAS  PubMed  Google Scholar 

  23. Hatmi S, Gruau C, Trotel-Aziz P, Villaume S, Rabenoelina F, Baillieul F (2015) Drought stress tolerance in grapevine involves activation of polyamine oxidation contributing to improved immune response and low susceptibility to Botrytis cinerea. J Exp Bot 66:775–787

    Article  CAS  PubMed  Google Scholar 

  24. Hernández LE, Cárpena-Ruiz R, Garate A (1996) Alterations in the mineral nutrition of pea seedlings exposed to cadmium. J Plant Nutr 19:1581–1598

    Article  Google Scholar 

  25. Jan S, Alyemeni MN, Wijaya L, Alam P, Siddique KH, Ahmad P (2018) Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biol 18(1):146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jaworski EG (1971) Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun 43:12741279

    Article  Google Scholar 

  27. Kaur N, Sharma I, Kirat K, Pati PK (2016) Detection of reactive oxygen species in Oryza sativa L. (rice). Bio-Protocol 6:1–9

    Article  Google Scholar 

  28. Khripach V, Zhabinskii V, Groot AD (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447

    Article  CAS  Google Scholar 

  29. Kubis J (2006) Exogenous spermidine alters in different way membrane permeability and lipid peroxidation in water stressed barley leaves. Acta Physiol Plant 28:27–33

    Article  CAS  Google Scholar 

  30. Marschner P (2012) Marschner’s mineral nutrition of higher plants. Academic Press, Boston

    Google Scholar 

  31. Mir BA, Khan TA, Fariduddin Q (2015) 24-epibrassinolide and spermidine modulate photosynthesis and antioxidant systems in Vigna radiata under salt and zinc stress. Int J Adv Res 3:592–608

    CAS  Google Scholar 

  32. Mostofa MG, Yoshida N, Fujita M (2014) Spermidine pretreatment enhances heat tolerance in rice seedlings through modulating antioxidative and glyoxalase systems. Plant Growth Regul 73:31–44

    Article  CAS  Google Scholar 

  33. Ozdemir F, Bor M, Demiral T, Turkan I (2004) Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul 42:203–211

    Article  Google Scholar 

  34. Parashar A, Yusuf M, Fariduddin Q, Ahmad A (2014) Salicylic acid enhances antioxidantsystem in Brassica juncea grown under different levels of manganese. Int J Biol Macromol 70:551–558

    Article  CAS  PubMed  Google Scholar 

  35. Perez-Leal O, Barrero CA, Clarkson AB, Casero RA Jr, Merali S (2012) Polyamine- regulated translation of spermidine/spermine-N1- acetyltransferase. Mol Cell Biol 32:1453–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rady MM (2011) Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci Hortic 129:232–237

    Article  CAS  Google Scholar 

  37. Ramakrishna B, Rao SS (2015) Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus L.) plants. Protoplasma 252(2):665–677

    Article  CAS  PubMed  Google Scholar 

  38. Ribera A, Reyes-Díaz M, Alberdi M, Alvarez-Cortez D, Rengel Z, Mora ML (2013) Photosynthetic impairment caused by Mn toxicity by associated antioxidative responses in perennial ryegrass. Crop Pasture Sci 64:696–707

    Article  CAS  Google Scholar 

  39. Rosales EP, Iannone MF, Groppa MD, Benavides MP (2012) Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide. Amino Acids 42:857–865

    Article  CAS  PubMed  Google Scholar 

  40. Saha J, Brauer EK, Sengupta A, Popescu SC, Gupta K, Gupta B (2015) Polyamines as redox homeostasis regulators during salt stress in plants. Front Environ Sci 3:21

    Article  Google Scholar 

  41. Sanchez M, Revilla G, Zarra I (1995) Changes in peroxidase activity associated with cell walls during pine hypocotyl growth. Ann Bot 75:415–419

    Article  CAS  Google Scholar 

  42. Schmidt SB, Powikrowska M, Krogholm KS, Naumann-Busch B, Schjoerring JK, Husted S, Jensen PE, Pedas PR (2016) Photosystem II functionality in barley responds dynamically to changes in leaf manganese status. Front Plant Sci 7:1772

    PubMed  PubMed Central  Google Scholar 

  43. Serna M, Coll Y, Zapata PJ, Botella MÁ, Pretel MT, Amorós AA (2015) A brassinosteroid analogue prevented the effect of salt stress on ethylene synthesis and polyamines in lettuce plants. Sci Hortic 185:105–112

    Article  CAS  Google Scholar 

  44. Shahbaz M, Ashraf M, Athar H (2008) Dose exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regul 55:51–64

    Article  CAS  Google Scholar 

  45. Shahid MA, Pervez MA, Balal RM, Mattson NS, Rashid A, Ahmad R, Ayyub CM, Abbas T (2011) Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). Aust J Crop Sci 5:500–510

    CAS  Google Scholar 

  46. Sheen J (1994) Feedback control of gene expression. Photosynth Res 39:427–438

    Article  CAS  PubMed  Google Scholar 

  47. Sheng H, Zeng J, Liu Y, Wang X, Wang Y, Kang H, Fan X, Sha L, Zhang H, Zhou Y (2016) Sulfur mediated alleviation of Mn toxicity in polish wheat relates to regulating Mn allocation and improving antioxidant system. Front Plant Sci 7:1382

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shi Q, Bao Z, Zhu Z, He Y, Qian Q, Yu J (2005) Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66:1551–1559

    Article  CAS  PubMed  Google Scholar 

  49. Silveira V, de Vita AM, Macedo AF, Dias MF, Floh EI, Santa-Catarina C (2013) Morphological and polyamine content changes in embryogenic and non- embryogenic callus of sugarcane. Plant Cell, Tissue Organ Cult 114(3):351–364

    Article  CAS  Google Scholar 

  50. Soltangheisi A, Rahman ZA, Ishak CF (2014) Interaction effects of zinc and manganese on growth, uptake repsonse and chlorophyll content of sweet corn (Zea mays var. saccharata). Asian J Plant Sci 13:26–33

    Article  CAS  Google Scholar 

  51. Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul 64(1):1–6

    Article  CAS  Google Scholar 

  52. Sullivan CY, Ross WM (1979) Selecting the drought and heat resistance in grain sorghum. In: Mussel H, Staples RC (eds) Stress physiology in crop plants. Wiley, New York, pp 263–281

    Google Scholar 

  53. Surgun Y, Col B, Burun B (2016) 24-Epibrassinolide ameliorates the effects of boron toxicity on Arabidopsis thaliana (L.) Heynh by activating an antioxidant system and decreasing boron accumulation. Acta Physiol Plant 38:71

    Article  CAS  Google Scholar 

  54. Takagi D, Takumi S, Hashiguchi M, Sejima T, Miyake C (2016) Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. Plant Physiol 171:1626–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18

    Article  CAS  PubMed  Google Scholar 

  56. Vardhini BV (2017) Modifications of morphological and anatomical characteristics of plants by application of brassinosteroids under various abiotic stress conditions—a review. Plant Gene. https://doi.org/10.1016/j.plgene.06.005

    Article  Google Scholar 

  57. Wang Q, Liang X, Dong Y, Xu L, Zhang X, Kong J, Liu S (2013) Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of perennial ryegrass under cadmium stress. J Plant Growth Regul 32:721–731

    Article  CAS  Google Scholar 

  58. Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xia XJ, Gao CJ, Song LX, Zhou YH, Shi K, Yu JQ (2014) Role of H2O2 dynamics in brassinosteroid- induced stomatal closure and opening in Solanum lycopersicum. Plant, Cell Environ 37:2036–2050

    Article  CAS  Google Scholar 

  60. Yusuf M, Fariduddin Q, Ahmad A (2011a) 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vigna radiata plants. Chemosphere 85(10):1574–1584

    Article  CAS  PubMed  Google Scholar 

  61. Yusuf M, Fariduddin Q, Hayat S, Hasan SA, Ahmad A (2011b) Protective responses of 28homobrssinolide in cultivars of Triticum aestivum with different levels of nickel. Arch Environ Contam Toxicol 60:68–76

    Article  CAS  PubMed  Google Scholar 

  62. Yusuf M, Fariduddin Q, Ahmad A (2012) 24-Epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: a shotgun approach. Plant Physiol Biochem 57:143–153

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Anjuman Hussain is thankful to UGC (New Delhi) India for providing the research fellowship. We are also grateful to University Sophisticated Instrumentation Facility (USIF) A.M.U., Aligarh for SEM analysis.

Funding

Funding was provided by UGC New Delhi, India, in the form of Non-NET fellowship (Grant No. gj1136) from Dec. 07, 2015.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qazi Fariduddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Nazir, F. & Fariduddin, Q. 24-epibrassinolide and spermidine alleviate Mn stress via the modulation of root morphology, stomatal behavior, photosynthetic attributes and antioxidant defense in Brassica juncea. Physiol Mol Biol Plants 25, 905–919 (2019). https://doi.org/10.1007/s12298-019-00672-6

Download citation

Keywords

  • Epibrassinolide
  • Manganese
  • Photosynthesis
  • Root morphology
  • Spermidine
  • Stomata