Skip to main content
Log in

Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice (Oryza sativa L.)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Being more sensitive to salt stress among the cereals, growth of rice (Oryza sativa L.) has been habitually affected by salinity. Although, several practices have evolved to sustain the growth of rice under salinity, the enormous role of calcium (Ca2+) as a signalling molecule in salt stress mitigation is still arcane. Considering this fact, an experiment was performed aiming to explicate the mechanism of salt-induced growth inhibition in rice and its alleviation by exogenous Ca2+. At germination stage, 10 mM and 15 mM CaCl2 primed rice (cv. Binadhan-10 & Binadhan-7) seeds were grown in petri dishes for 9 days under 100 mM NaCl stress. At seedling stage, 9-day-old rice seedlings grown on sand were exposed to 100 mM NaCl alone and combined with 10 mM and 15 mM CaCl2 for 15 days. This research revealed that salinity radically slowed down growth of rice seedlings and Ca2+ treatment noticeably improved growth performances. At germination stage, 10 mM CaCl2 treatment significantly increased the final germination percentage, germination rate index (in Binadhan-7), shoot, root length (89.20, 67.58% in Bindhan-10 & 84.72, 31.15% in Bindhan-7) and biomass production under salinity. Similarly, at seedling stage, 10 mM CaCl2 supplementation in salt-stressed plants enhanced shoot length (42.17, 28.76%) and shoot dry weight (339.52, 396.20%) significantly in Binadhan-10 & Binadhan-7, respectively, but enhanced root dry weight (36.76%) only in Binadhan-10. In addition, 10 mM CaCl2 supplementation on salt-stressed seedlings increased the chlorophyll and proline content, and oppressed the accretion of reactive oxygen species thus protecting from oxidative damage more pronouncedly in Binadhan-10 than Binadhan-7 as reflected by the elevated levels of catalase and ascorbate peroxidase activity. The 15 mM CaCl2 somehow also enhanced some growth parameters but overall was less effective than 10 mM CaCl2 to alleviate salt stress, and sometimes showed negative effect. Therefore, supplementary application of calcium-rich fertilizers in saline prone soils can be an effective approach to acclimatize salt stress and cultivate rice successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdalla MM (2011) Impact of diatomite nutrition on two Trifolium alexandrinum cultivars differing in salinity tolerance. Int J Plant Physiol Biochem 3:233–246

    CAS  Google Scholar 

  • Acosta-Motos J, Ortuño M, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco M, Hernandez J (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18

    Article  CAS  Google Scholar 

  • Acosta-Motos JR, Diaz-Vivancos P, Acosta M, Hernandez JA (2019) Effect of biostimulants on plant responses to salt stress. In: Hasanuzzaman M et al (eds) Plant tolerance to environmental stress: role of phytoprotectants. CRC Press, Boca Raton, pp 363–380

    Chapter  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  • Afrin S, Tahjib-Ul-Arif M, Sakil MA, Sohag AAM, Polash MAS, Hossain MA (2019) Hydrogen peroxide priming alleviates chilling stress in rice (Oryza sativa L.) by enhancing oxidant scavenging capacity. Fundam Appl Agric 4:713–722

    Google Scholar 

  • Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra AS (2018) Mechanism of stomatal closure in plants exposed to drought and cold stress. In: Iwaya-Inoue M (ed) Survival strategies in extreme cold and desiccation. Springer, Singapore, pp 215–232

    Chapter  Google Scholar 

  • Arshi A, Ahmad A, Aref IM, Iqbal M (2010) Effect of calcium against salinity-induced inhibition in growth, ion accumulation and proline contents in Cichorium intybus L. J Environ Biol 31:939–944

    CAS  PubMed  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85:235–241

    Article  CAS  Google Scholar 

  • Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H, Komatsu S, Hirochika H, Kikuchi S, Ohsugi R (2012) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69:26–36

    Article  CAS  PubMed  Google Scholar 

  • Bahrani A, Hagh Joo M (2012) Response of some wheat (Triticum aestivum L.) genotypes to salinity at germination and early seedling growth stages. World Appl Sci J 16:599–609

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, San Segundo B (2014) Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol 165:688–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coskun D, Britto DT, Huynh WQ, Kronzucker HJ (2016) The role of silicon in higher plants under salinity and drought stress. Front Plant Sci 7:1072

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54:657–661

    Article  CAS  PubMed  Google Scholar 

  • D’Souza MR, Devaraj VR (2013) Mercury-induced changes in growth and oxidative metabolism of field bean (Dolichos lablab). Res J Chem Environ 17:86–93

    Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Maathuis FJ (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annu Rev Plant Biol 53:67–107

    Article  CAS  PubMed  Google Scholar 

  • FAO (2016) FAOSTAT: online statistical database. http://faostat.fao.org/. Accessed 30 July 2016

  • Gao JP, Chao DY, Lin HX (2007) Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J Integr Plant Biol 49(6):742–750

    Article  CAS  Google Scholar 

  • Geist H (2017) The causes and progression of desertification. Routledge, London

    Book  Google Scholar 

  • Ghosh B, Md NA, Gantait S (2016) Response of rice under salinity stress: a review update. Rice research: open access 26:1–8

    Google Scholar 

  • Goyal MR, Gupta SK, Singh A (2018) Physiological and biochemical changes in plants under soil salinity stress: a review. In: Gupta SK et al (eds) Engineering practices for management of soil salinity, 1st edn. Apple Academic Press, Palm Bay, pp 159–200

    Google Scholar 

  • Gu MF, Li N, Long XH et al (2016) Accumulation capacity of ions in cabbage (Brassica oleracea L.) supplied with sea water. Plant Soil Environ 62:314–320

    Article  CAS  Google Scholar 

  • Guérin A, Gravelle S, Dumais J (2016) Forces behind plant cell division. Proc Natl Acad Sci 113:8891–8893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom. https://doi.org/10.1155/2014/701596

    Article  Google Scholar 

  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 29:1787

    Google Scholar 

  • Hasanuzzaman M, Alam MM, Rahman A, Hasanuzzaman M, Nahar K, Fujita M (2014) Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. Biomed Res Int. https://doi.org/10.1155/2014/757219

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California agricultural experiment station, Circular 347, pp 1–32

  • Hossain MA, Fujita M (2013) Hydrogen peroxide priming stimulates drought tolerance in mustard (Brassica juncea L.) seedlings. Plant Gene Trait 4:109–123

    Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. https://doi.org/10.1155/2012/872875

    Article  Google Scholar 

  • International Rice Research Institute (IRRI) (2002) Standard evaluation system (SES). International Rice Research Institute, Manila, pp 11–30

    Google Scholar 

  • Iqbal N, Umar S, Khan NA (2015) Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J Plant Physiol 178:84–91

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Kishorekumar A, Manivannan P, Saankar B, Gomathinayagam M, Panneerselvam R (2008) Salt stress mitigation by calcium chloride in Phyllanthus amarus. Acta Bot Croat 67:53–62

    CAS  Google Scholar 

  • Keling H, Zhujun Z (2010) Effects of different concentrations of sodium chloride on plant growth and glucosinolate content and composition in Pakchoi. Afr J Biotechnol 9:4428–4433

    Google Scholar 

  • Kibria MG, Hossain M, Murata Y, Hoque MA (2017) Antioxidant defense mechanisms of salinity tolerance in rice genotypes. Rice Sci 24:155–162

    Article  Google Scholar 

  • Kordrostami M, Rabiei B (2019) Salinity stress tolerance in plants: physiological, molecular, and biotechnological approaches. In: Hasanuzzaman M et al (eds) Plant abiotic stress tolerance. Springer, Switzerland. https://doi.org/10.1007/978-3-030-06118-0_4

    Chapter  Google Scholar 

  • Kosar F, Akram NA, Sadiq M, Al-Qurainy F, Ashraf M (2018) Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance. J Plant Growth Regul. https://doi.org/10.1007/s00344-018-9876-x

    Article  Google Scholar 

  • Kurepin LV, Ivanov AG, Zaman M, Pharis RP, Hurry V, Hüner NP (2017) Interaction of glycine betaine and plant hormones: protection of the photosynthetic apparatus during abiotic stress. In: Hou HJM et al (eds) Photosynthesis: structures, mechanisms, and applications. Springer, Cham, pp 185–202

    Chapter  Google Scholar 

  • Liu TW, Wu FH, Wang WH, Chen J, Li ZJ, Dong XJ, Patton J, Pei ZM, Zheng HL (2011) Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain. Tree Physiol 31:402–413

    Article  CAS  PubMed  Google Scholar 

  • Mahmood-ur-Rahman, Ijaz M, Qamar S, Bukhari SA, Malik K (2019) Abiotic stress signaling in rice crop. In: Hasanuzzaman M (ed) Advances in rice research for abiotic stress tolerance. Woodhead Publishing, Cambridge, pp 551–569

    Chapter  Google Scholar 

  • Manivannan P, Jaleel CA, Kishorekumar A, Sankar B, Somasundaram R, Sridharan R, Panneerselvam R (2007) Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. by propiconazole under water deficit stress. Colloids Surf B Biointerfaces 57:69–74

    Article  CAS  PubMed  Google Scholar 

  • Mbarki S, Cerdà A, Zivcak M, Brestic M, Rabhi M, Mezni M, Jedidi N, Abdelly C, Pascual JA (2018a) Alfalfa crops amended with MSW compost can compensate the effect of salty water irrigation depending on the soil texture. Process Saf Environ 115:8–16

    Article  CAS  Google Scholar 

  • Mbarki S, Sytar O, Cerda A, Zivcak M, Rastogi A, He X, Zoghlami A, Abdelly C, Brestic M (2018b) Strategies to mitigate the salt stress effects on photosynthetic apparatus and productivity of crop plants. In: Kumar V (ed) Salinity responses and tolerance in plants, vol 1. Springer, Cham, pp 85–136

    Chapter  Google Scholar 

  • Mickky BM, Abbas MA, Sameh NM (2019) Morpho-physiological status of fenugreek seedlings under NaCl stress. J King Saud Univ. https://doi.org/10.1016/j.jksus.2019.02.005

    Article  Google Scholar 

  • Miller GAD, Suzuki N, Ciftci-Yilmaz S, Mittler RON (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ 33:453–467

    Article  CAS  Google Scholar 

  • Morgan SH, Maity PJ, Geilfus CM, Lindberg S, Mühling KH (2014) Leaf ion homeostasis and plasma membrane H+-ATPase activity in Vicia faba change after extra calcium and potassium supply under salinity. Plant Physiol Biochem 82:244–253

    Article  CAS  PubMed  Google Scholar 

  • Morton MJ, Awlia M, Al-Tamimi N, Saade S, Pailles Y, Negrão S, Tester M (2019) Salt stress under the scalpel–dissecting the genetics of salt tolerance. Plant J 97:148–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nounjan N, Nghia PT, Theerakulpisut P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169:596–604

    Article  CAS  PubMed  Google Scholar 

  • Oprica L, Sandu L (2014) Impact of inorganic salt solution on antioxidative enzyme activity and photosynthetic pigments content in Trogonella foenum-graecum seedlings. Ann “Alexandru Ioan Cuza Uni” Sec II Gen Mol Bio 15:31

    CAS  Google Scholar 

  • Öztürk L, Demir Y (2003) Effects of putrescine and ethephon on some oxidative stress enzyme activities and proline content in salt stressed spinach leaves. Plant Growth Regul 40:89–95

    Article  Google Scholar 

  • Ozturk L, Demir Y, Unlukara A, Karatas I, Kurunc A, Duzdemir O (2012) Effects of long-term salt stress on antioxidant system, chlorophyll and proline contents in pea leaves. Rom Biotech Lett 17:7227–7236

    CAS  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22:4056–4075

    Article  CAS  Google Scholar 

  • Patel TK, Williamson JD (2016) Mannitol in plants, fungi, and plant–fungal interactions. Trends Plant Sci 21:486–497

    Article  CAS  PubMed  Google Scholar 

  • Per TS, Khan NA, Reddy PS, Masood A, Hasanuzzaman M, Khan MI, Anjum NA (2017) Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: phytohormones, mineral nutrients and transgenics. Plant Physiol Biochem 115:126–140

    Article  CAS  PubMed  Google Scholar 

  • Plieth C, Vollbehr S (2012) Calcium promotes activity and confers heat stability on plant peroxidases. Plant Signal Behav 7:650–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polash MAS, Sakil MA, Tahjib-Ul-Arif M, Hossain MA (2018) Effect of salinity on osmolytes and relative water content of selected rice genotypes. Trop Plant Res 5:227–232

    Article  Google Scholar 

  • Rahman A, Nahar K, Hasanuzzaman M, Fujita M (2016) Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Front Plant Sci 7:609

    PubMed  PubMed Central  Google Scholar 

  • Reddy IN, Kim SM, Kim BK, Yoon IS, Kwon TR (2017) Identification of rice accessions associated with K+/Na+ ratio and salt tolerance based on physiological and molecular responses. Rice Sci 24:360–364

    Article  Google Scholar 

  • Reza S, Heidari R, Zare S, Norastehnia A (2006) Antioxidant response of two salt-stressed barley varieties in the presence or absence of exogenous proline. Gen Appl Plant Physiol 32:233–251

    Google Scholar 

  • Roy PR, Tahjib-Ul-Arif M, Akter T, Ray SR, Sayed MA (2016) Exogenous ascorbic acid and hydrogen peroxide alleviates salt-induced oxidative stress in rice (Oryza sativa L.) by enhancing antioxidant enzyme activities and proline content. Adv Environ Biol 10:148–155

    CAS  Google Scholar 

  • Safdar H, Amin A, Shafiq Y, Ali A, Yasin R, Shoukat A, Hussan MU, Sarwar MI (2019) A review: impact of salinity on plant growth. Nat Sci 17:34–40

    Google Scholar 

  • Saini P, Gani M, Kaur JJ, Godara LC, Singh C, Chauhan SS, Francies RM, Bhardwaj A, Kumar NB, Ghosh MK (2018) Reactive oxygen species (ROS): a way to stress survival in plants. In: Zargar SM, Zargar MY (eds) Abiotic stress-mediated sensing and signaling in plants: an omics perspective. Springer, Singapore, pp 127–153

    Chapter  Google Scholar 

  • Salahshoor F, Kazemi F (2016) Effect of calcium on reducing salt stress in seed germination and early growth stage of Festuca ovina L. Plant Soil Environ 62:460–466

    Article  CAS  Google Scholar 

  • Sami F, Yusuf M, Faizan M, Faraz A, Hayat S (2016) Role of sugars under abiotic stress. Plant Physiol Biochem 109:54–61

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Pottosin I (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol Plant 151:257–279

    Article  CAS  PubMed  Google Scholar 

  • Shaheen S, Naseer S, Ashraf M, Akram NA (2013) Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. J Plant Interact 8(1):85–96

    Article  CAS  Google Scholar 

  • Shereen A, Ansari R, Raza S, Mumtaz S, Khan MA, Khan MA (2011) Salinity induced metabolic changes in rice (Oryza sativa L.) seeds during germination. Pak J Bot 43:1659–1661

    Google Scholar 

  • Sibole JV, Cabot C, Poschenrieder C, Barceló J (2003) Efficient leaf ion partitioning, an overriding condition for abscisic acid-controlled stomatal and leaf growth responses to NaCl salinization in two legumes. J Exp Bot 54:2111–2119

    Article  CAS  PubMed  Google Scholar 

  • Silva EN, Ribeiro RV, Ferreira-Silva SL, Viégas RA, Silveira JA (2011) Salt stress induced damages on the photosynthesis of physic nut young plants. Sci Agric 68:62–68

    Article  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohan D, Jasoni R, Zajicek J (1999) Plant–water relations of NaCl and calcium-treated sunflower plants. Environ Exp Bot 42:105–111

    Article  CAS  Google Scholar 

  • Soualem S, Adda A, Belkhodja M, Merah O (2014) Calcium supply reduced effect of salinity on growth in the Mediterranean shrub (Atriplex halimus L.). Life Sci J 11:278–284

    CAS  Google Scholar 

  • Soundararajan P, Manivannan A, Jeong BR (2017) Reactive oxygen species signaling and seed germination: an overview. In: Singh VP et al (eds) Reactive oxygen species in plants: boon or bane-revisiting the role of ROS. Wiley, Hoboken, pp 291–306

    Chapter  Google Scholar 

  • Tahjib-Ul-Arif M, Roy PR, Sohag AAM, Afrin S, Rady MM, Hossain MA (2018a) Exogenous calcium supplementation improves salinity tolerance in BRRI dhan28; a salt-susceptible high-yielding Oryza sativa cultivar. J Crop Sci Biotechnol 21:383–394

    Article  Google Scholar 

  • Tahjib-Ul-Arif M, Sayed MA, Islam MM, Siddiqui MN, Begum SN, Hossain MA (2018b) Screening of rice landraces (Oryza sativa L.) for seedling stage salinity tolerance using morpho-physiological and molecular markers. Acta Physiol Plant 40:70

    Article  CAS  Google Scholar 

  • Tahjib-Ul-Arif M, Siddiqui MN, Sohag AAM, Sakil MA, Rahman MM, Polash MAS, Mostofa MG, Tran LSP (2018c) Salicylic acid-mediated enhancement of photosynthesis attributes and antioxidant capacity contributes to yield improvement of maize plants under salt stress. J Plant Growth Regul 37:1318–1330

    Article  CAS  Google Scholar 

  • Tang X, Mu X, Shao H, Wang H, Brestic M (2015) Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 35:425–437

    Article  CAS  PubMed  Google Scholar 

  • Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmur B (2007) The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ Exp Bot 59:173–178

    Article  CAS  Google Scholar 

  • Vibhuti CS, Bargali K, Bargali SS (2015) Seed germination and seedling growth parameters of rice (Oryza sativa L.) varieties as affected by salt and water stress. Indian J Agric Sci 85:102–108

    Google Scholar 

  • Wang G, Bi A, Amombo E, Li H, Zhang L, Cheng C, Hu T, Fu J (2017) Exogenous calcium enhances the photosystem II photochemistry response in salt stressed tall fescue. Front Plant Sci 8:2032

    Article  PubMed  PubMed Central  Google Scholar 

  • Waszczak C, Carmody M, Kangasjärvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236

    Article  CAS  PubMed  Google Scholar 

  • Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Ghassemi-Golezani K (2012) Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics 5:60

    CAS  Google Scholar 

  • Wu GQ, Wang SM (2012) Calcium regulates K+/Na+ homeostasis in rice (Oryza sativa L.) under saline conditions. Plant Soil Environ 58:121–127

    Article  CAS  Google Scholar 

  • Xiong L, Zhu J (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell Environ 25:131–139

    Article  CAS  Google Scholar 

  • Xu D, Wang W, Gao T, Fang X, Gao X, Li J, Bu H, Mu J (2017) Calcium alleviates decreases in photosynthesis under salt stress by enhancing antioxidant metabolism and adjusting solute accumulation in Calligonum mongolicum. Conserv Physiol. https://doi.org/10.1093/conphys/cox060

    Article  Google Scholar 

  • Yan K, Shao H, Shao C, Chen P, Zhao S, Brestic M, Chen X (2013) Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol Plant 35:2867–2878

    Article  CAS  Google Scholar 

  • Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217:523–539

    Article  CAS  PubMed  Google Scholar 

  • Yasar F, Ellialtioglu S, Yildiz K (2008) Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russ J Plant Physiol 55:782

    Article  CAS  Google Scholar 

  • Yin Y, Yang R, Han Y, Gu Z (2015) Comparative proteomic and physiological analyses reveal the protective effect of exogenous calcium on the germinating soybean response to salt stress. J Proteom 113:110–126

    Article  CAS  Google Scholar 

  • Zehra A, Gul B, Ansari R, Khan MA (2012) Role of calcium in alleviating effect of salinity on germination of Phragmites karka seeds. S Afr J Bot 78:122–128

    Article  CAS  Google Scholar 

  • Zeng L, Shannon MC, Lesch SM (2001) Timing of salinity stress affects rice growth and yield components. Agric Water Manag 48:191–206

    Article  Google Scholar 

  • Zhang DW, Vu TS, Huang J, Chi CY, Xing Y, Fu DD, Yuan ZN (2019) Effects of calcium on germination and seedling growth in melilotus officinalis L. (Fabaceae) under salt stress. Pak J Bot 51:1–9

    Google Scholar 

  • Zhen-hua ZH, Qiang LI, Hai-xing SO, Xiang-min RO, Ismail AM (2012) Responses of different rice (Oryza sativa L.) genotypes to salt stress and relation to carbohydrate metabolism and chlorophyll content. Afr J Agric Res 7:19–27

    Google Scholar 

Download references

Acknowledgments

The authors are also grateful to Promod Kumar Nagar for his valuable suggestions in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Tahjib-Ul-Arif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, P.R., Tahjib-Ul-Arif, M., Polash, M.A.S. et al. Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice (Oryza sativa L.). Physiol Mol Biol Plants 25, 611–624 (2019). https://doi.org/10.1007/s12298-019-00654-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-019-00654-8

Keywords

Navigation