Skip to main content

Advertisement

Log in

Exploring the traits for lodging tolerance in wheat genotypes: a review

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The rising population entails enhancement in wheat productivity to ensure substantial food supply which often get hindered by various biotic and abiotic stresses. Lodging, due to rain and high velocity wind causes significant economic and yield losses in cereals. Hence, lodging is emerging as a major hurdle to achieve the required yield targets. Various morphological, biochemical, anatomical and genetic traits contribute to produce a plant competent enough to bear lodging stress. Hence, in this review, we intend to elaborate the cause and impact relationship of lodging and tried to link lodging tolerance traits to field practices to minimize the losses. Because of the complex nature of lodging phenomenon, it is still obscure to identify best correlated traits to screen genotype in breeding programmes. However, the genotypes with best correlated traits like plant height, culm wall thickness should be introduced/selected in breeding programmes to inculcate lodging tolerance in a high yielding variety as in recent era lodging tolerance is a key factor to enhance productivity and farmer’s income as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acreche MM, Slafer GA (2011) Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crops Res 122(1):40–48

    Article  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12–03. Rome, FAO

  • Arai-Sanoh Y, Ida M, Zhao R, Yoshinaga S, Takai T, Ishimaru T, Kato N (2011) Genotypic variations in non-structural carbohydrate and cell wall components of the stem in rice, sorghum, and sugarcane. Biosci Biotechnol Biochem 75:1104–1112

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2014) Stress-induced changes in wheat grain composition and quality. Crit Rev Food Sci Nutr 54(12):1576–1583

    Article  CAS  PubMed  Google Scholar 

  • Berry PM, Berry ST (2015) Understanding the genetic control of lodging-associated plant characters in winter wheat (Triticum aestivum L.). Euphytica 205(3):671–689

    Article  Google Scholar 

  • Berry PM, Spink J (2012) Predicting yield losses caused by lodging in wheat. Field Crops Res 137:19–26

    Article  Google Scholar 

  • Berry PM, Griffin JM, Sylvester-Bradley R, Scott RK, Spink JH, Baker CJ, Clare RW (2000) Controlling plant form through husbandry to minimise lodging in wheat. Field Crops Res 67:59–81

    Article  Google Scholar 

  • Berry P, Spink J, Gay A, Craigon J (2003a) A comparison of root and stem lodging risks among winter wheat cultivars. J Agric Sci 141(2):191–202

    Article  Google Scholar 

  • Berry PM, Spink J, Sterling M, Pickett AA (2003b) Methods for rapidly measuring the lodging resistance of wheat cultivars. J Agron Crop Sci 189:390–401

    Article  Google Scholar 

  • Berry PM, Sterling M, Spink JH, Baker CJ, Sylvester-Bradley R, Mooney SJ, Tams AR, Ennos AR (2004) Understanding and reducing lodging in cereals. Adv Agron 84:217–271

    Article  Google Scholar 

  • Berry PM, Sterling M, Mooney SJ (2006) Development of a model of lodging for barley. J Agron Crop Sci 192:151–158

    Article  Google Scholar 

  • Berry PM, Sylvester- Bradley R, Berry S (2007) Ideotype design for lodging-resistant wheat. Euphytica 154:165–179

    Article  Google Scholar 

  • Berry PM, Kendall S, Rutterford Z, Orford S, Griffiths S (2014) Historical analysis of the effects of breeding on the height of winter wheat (Triticum aestivum) and consequences for lodging. Euphytica 203(2):375–383

    Article  Google Scholar 

  • Bridgemohan P, Bridgemohan RSH (2014) Evaluation of anti-lodging plant growth regulators on the growth and development of rice (Oryza sativa). J Cereals Oilseed 5(3):12–16

    CAS  Google Scholar 

  • Campbell CM (1963) Influence of seed formation of corn on accumulation of vegetative dry matter and stalk strength. Crop Sci 4:31–34

    Article  Google Scholar 

  • Crook MJ, Ennos AR (1993) The mechanics of root lodging in winter wheat (Triticum aestivum L.). J Exp Bot 44:1219–1224

    Article  Google Scholar 

  • Curtis T, Halford NG (2014) Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol 164(3):354–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Department of Agriculture, Cooperation & Farmers Welfare, Ministry of Agriculture & Farmers Welfare, Annual report (2017–2018), Government of India, Krishi Bhawan, New Delhi

  • Dronamraju KR (2008) Emerging consequences of biotechnology: biodiversity loss and IPR issues. World Scientific, Singapore, Science – 460 pages. ISBN: 978-981-277-501-6

  • Easson DL, White EM, Pickles SL (1993) The effects of weather, seed rate and genotype on lodging and yield in winter wheat. J Agric Sci 121:145–156

    Article  Google Scholar 

  • Fan WX, Hou YX, Feng SW, Zhu FK, Ru ZG (2012) Study on cellulose and lodging resistance of wheat straw. J Henan Agric Sci 9

  • Foulkes MJ, Slafer GA, Davies WJ, Berry PM et al (2011) Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J Exp Bot 62:469–486

    Article  CAS  PubMed  Google Scholar 

  • French P, Matsuyuki H, Ueno H (1990) Paclobutrazol: control of lodging in Japanese paddy Rice. In: Grayson BT, Green MB, Copping LG (eds) Pest management in rice. Springer, Dordrecht, pp 474–485

    Chapter  Google Scholar 

  • Gale MD, Marshall GA (1973) The chromosomal location of Gai 1 and Rht 1, genes for Gibberellin insensitivity and semi-dwarfism, in a derivative of Norin 10 wheat. Heredity 37:283–289

    Article  Google Scholar 

  • Ghaffar SH, Fan M (2015) Revealing the morphology and chemical distribution of nodes in wheat straw. Biomass Bioenergy 77:123–134

    Article  CAS  Google Scholar 

  • Hai L, Guo H, Xiao S, Jiang G, Zhang X, Yan C, Xin Z, Jia J (2005) Quantitative trait loci (QTL) of stem strength and related traits in a doubled-haploid population of wheat (Triticum aestivum L.). Euphytica 141:1–9

    Article  CAS  Google Scholar 

  • Hamada A, Nitta M, Nasuda S, Kato K, Fujita M, Matsunaka H, Okumoto Y (2012) Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.). Plant Soil 354(1–2):395–405

    Article  CAS  Google Scholar 

  • Hasnath Karim MD, Jahan MA (2013) study of lodging resistance and its associated traits in bread wheat. ARPN J Agric Biol Sci 8:10

    Google Scholar 

  • Kashiwagi T, Sasaki H, Ishimaru K (2005) Factors responsible for decreasing sturdiness of the lower part in lodging of rice (Oryza sativa L.). Plant Prod Sci 2:166–172

    Article  Google Scholar 

  • Kelbert AJ, Spaner D, Briggs KG, King JR (2004) The association of culm anatomy with lodging susceptibility in modern spring wheat genotypes. Euphytica 136:211–221

    Article  Google Scholar 

  • Keller M, Karutz C, Schmid JE, Stamp P, Winzeler M, Keller B, Messmer MM (1999) Quantitative trait loci for lodging resistance in a segregating wheat × spelt population. Theor Appl Genet 98:1171–1182

    Article  CAS  Google Scholar 

  • Kokubo A, Kuraishi S, Sakurai N (1989) Culm strength of barley: correlation among maximum bending stress, cell wall dimensions, and cellulose content. Plant Physiol 91:876–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong E, Liu D, Guo X, Yang W, Sun J, Li X, Zhan K, Cui D, Lin J, Zhang A (2013) Anatomical and chemical characteristics associated with lodging resistance in wheat. Crop J 1:43–49

    Article  Google Scholar 

  • Kono M (1995) Physiological aspects of lodging. In: Matsuo T, Kumazawa K, Ishii R, Ishihrar K, Hirata H (eds) Science of the rice plant: physiology, vol 2. Food and Agriculture Policy Research Center, Tokyo, pp 971–982

    Google Scholar 

  • Kono M, Takahashi J (1964) The effect of wind force with reference to lodging of paddy rice. J Soil Sci Plant Nutr 10(6):20–27

    Article  Google Scholar 

  • Lang YZ, Yang XD, Wang ME, Zhu QS (2012) Effects of lodging at different filling stages on rice yield and grain quality. Rice Sci 19:315–319

    Article  Google Scholar 

  • Li X, Yang Y, Yao J, Chen G, Li X, Zhang Q, Wu C (2009) FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Mol Biol 69:685–697

    Article  CAS  Google Scholar 

  • Lindedam J, Andersen SB, DeMartini J, Bruun S, Jørgensen H, Felby C et al (2012) Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw. Biomass Bioenergy 37:221–228

    Article  CAS  Google Scholar 

  • Longin CFH, Würschum T (2014) Genetic variability, heritability and correlation among agronomic and disease resistance traits in a diversity panel and elite breeding material of spelt wheat. Plant Breeding 133(4):459–464

    Article  Google Scholar 

  • Ma QH (2007) Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat. J Exp Bot 58:2011–2021

    Article  CAS  PubMed  Google Scholar 

  • Ma QH (2009) The expression of caffeic acid 3-O-methyltransferase in two wheat genotypes differing in lodging resistance. J Exp Bot 60:2763–2771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall A, Cowan S, Edwards S, Griffiths I, Howarth C, Landon T, White E (2013) Crops that feed the world 9. Oats-a cereal crop for human and livestock feed with industrial applications. Food Secu 5(1):13–33

    Article  Google Scholar 

  • Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112(4):688–698

    Article  CAS  PubMed  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC domain’. Genome 48(5):870–883

    Article  CAS  PubMed  Google Scholar 

  • McIntyre L, Casu RE, Rattey A, Dreccer MF, Kam JW, van Herwaarden AF, Shorter R, Xue GP (2011) Linked gene networks involved in nitrogen and carbon metabolism and levels of water soluble carbohydrate accumulation in wheat stems. Funct Integr Genomics 11(4):585–597

    Article  CAS  PubMed  Google Scholar 

  • Moura JCMS, Bonine CAV, Viana JOF, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    Article  CAS  PubMed  Google Scholar 

  • Mulsanti IW, Yamamoto T, Ueda T et al (2018) Finding the superior allele of japonica-type for increasing stem lodging resistance in indica rice varieties using chromosome segment substitution lines. Rice 11:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Navabi A, Iqbal M, Strenzke K, Spaner D (2006) The relationship between lodging and plant height in a diverse wheat population. Can J Plant Sci 86:723–726

    Article  Google Scholar 

  • Okuno A, Hirano K, Asano K, Takase W, Masuda R, Morinaka Y et al (2014) New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS ONE 9(2):e86870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Packa D, Wiwart M, Suchowilska E, Bieńkowska T (2015) Morpho-anatomical traits of two lowest internodes related to lodging resistance in selected genotypes of Triticum. Int Agrophys 29:475–483

    Article  Google Scholar 

  • Peake AS, Huth NI, Carberry PS, Raine SR, Smith RJ (2014) Quantifying potential yield and lodging-related yield gaps for irrigated spring wheat in sub-tropical Australia. Field Crops Res 158:1–14

    Article  Google Scholar 

  • Peng D, Chen X, Yin Y, Lu K, Yang W, Tang Y, Wang Z (2014) Lodging resistance of winter wheat (Triticum aestivum L.): lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crops Res 157:1–7

    Article  Google Scholar 

  • Pham QD, Akira A, Hirano M, Sagawa S, Kuroda E (2004) Analysis of lodging resistant characteristic of different rice genotypes grown under the standard and nitrogen–free basal dressing accompanied with sparse planting density practices. Plant Prod Sci 7:243–251

    Article  Google Scholar 

  • Pinera-Chavez FJ, Berry PM, Foulkes MJ, Jesson MA, Reynolds MP (2016) Avoiding lodging in irrigated spring wheat. I. Stem and root structural requirements. Field Crops Res 196:325–336

    Article  Google Scholar 

  • Pinthus MJ (1967) Spread of the root system as an indicator for evaluating lodging resistance of wheat. Crop Sci 7:107–110

    Article  Google Scholar 

  • Pinthus ML (1973) Lodging in wheat, barley, and oats: the phenomenon, its causes, and preventative measures. Adv Agron 25:210–256

    Google Scholar 

  • Rademacher W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 51:501–531

    Article  CAS  PubMed  Google Scholar 

  • Rajala A, Peltonen-Sainio P (2002) Timing applications of growth regulators to alter spring cereal development at high latitudes. Agric Food Sci Finl Agric 11:233–244

    Article  CAS  Google Scholar 

  • Rajkumara S (2008) Lodging in cereals—a review. Agric Rev 29(1):55–60

    Google Scholar 

  • Rebetzke GJ, Van Herwaarden AF, Jenkins C, Weiss M, Lewis D, Ruuska S, Tabe L, Fettell NA, Richards RA (2008) Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat. Aust J Agric Res 59(10):891–905

    Article  CAS  Google Scholar 

  • Shah AN, Tanveer M, Rehman AU, Anjum SA, Iqbal J, Ahmad R (2016) Lodging stress in cereal—effects and management: an overview. Environ Sci Pollut Res 24(6):5222–5237

    Article  Google Scholar 

  • Sharma I, Tyagi BS, Singh G, Venkatesh K, Gupta OP (2015) Enhancing wheat production—a global perspective. Indian J Agric Sci 85(1):3–13

    Google Scholar 

  • Spink JH, Whaley JM, Semere T, Wade AP, Sparkes DL, Foulkes MJ (2000b) Prediction of optimum plant population in winter wheat Project Report No 234 Home-Grown Cereals Authority, London

  • Stachecki S, Praczyk T, Adamczewski K (2004) Adjuvant effects on plant growth regulators in winter wheat. J Plant Prot Res 44(4):365–371

    CAS  Google Scholar 

  • Stapper M, Fischer RA (1990) Genotype, sowing date and plant spacing influence on high yielding irrigated wheat in Southern New South Wales II Growth, yield and nitrogen use. Aust J Agric Res 41:1021–1041

    Article  Google Scholar 

  • Sterling M, Baker CJ, Berry PM, Wade A (2003) An experimental investigation of the lodging of wheat. Agric For Meteorol 119:149–165

    Article  Google Scholar 

  • Syahputra BSA (2012) Effect of paclobutrazol on lodging resistance, growth and yield of direct seeded rice. Dissertation, University Putra Malaysia

  • Tams AR, Mooney SJ, Berry PM (2004) The effect of lodging in cereals on morphological properties of the root-soil complex. In: 3rd Australian New Zealand soils conference, 5–9 December 2004, University of Sydney, Australia

  • Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11:769–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    Article  CAS  PubMed  Google Scholar 

  • Tripathi SC, Sayre KD, Kaul JN, Narang RS (2003) Growth and morphology of spring wheat (Triticum aestivum L.) culms and their association with lodging: effects of genotypes, N levels and ethephon. Field Crops Res 84:271–290

    Article  Google Scholar 

  • USDA (2014) Wheat Outlook/WHS-14e/May 13, 2014 Economic Research Service. http://usda.mannlib.cornell.edu/usda/ers/WHS//2010s/2014/WHS-05-13-2014.pdf

  • Vera CL, Irvine RB, Duguid SD, Rashid KY, Clarke FR, Slaski JJ (2014) Short communication: comparative effect of lodging on seed yield of flax and wheat. Can J Plant Sci 94(1):119–126

    Article  Google Scholar 

  • Verma V, Worland AJ, Sayers EJ, Fish L, Caligari PDS, Snape JW (2005) Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat. Plant Breeding 124(3):234–241

    Article  CAS  Google Scholar 

  • Wang J, Zhu J, Qinqin L, Li X, Nianjun T, Li Z, Li B, Zhang A (2006) The effect of the anatomical structure and chemical components of the culm on lodging resistance in wheat. Sci Bull 51(5):1–7

    Google Scholar 

  • Wang J, Zhu J, Huang RZ, Yang YS (2012) Investigation of cell wall composition related to stem lodging resistance in wheat (Triticum aestivum L.) by FTIR spectroscopy. Plant Signal Behav 7(7):856–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Ma BL (2015) Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: a review. Sci Total Environ 512:415–427

    Article  CAS  PubMed  Google Scholar 

  • Xiang DB, Zhao G, Wan Y, Tan ML, Song C, Song Y (2016) Effect of planting density on lodging-related morphology, lodging rate, and yield of tartary buckwheat (Fagopyrum tataricum). Plant Prod Sci 19:(4)479–488

    Article  Google Scholar 

  • Xiao Y, Liu J, Li H, Cao X, Xia X, He Z (2015) Lodging resistance and yield potential of winter wheat: effect of planting density and genotype. Front Agric Sci Eng 2(2):168–178

    Article  Google Scholar 

  • Zhang FZ, Jin Z, Guo-hui MA, Shang W, Liu H, Mei-lan X, Liu Y (2010) Relationship between lodging resistance and chemical contents in culms and sheaths of Japonica rice during grain filling. Rice Sci 17:311–318

    Article  Google Scholar 

  • Zhang WJ, Wu LM, Ding YF, Weng F, Wu XR, Li GH, Liu ZH, Tang S, Ding CQ, Wang SH (2015) Top-dressing nitrogen fertilizer rate contributes to reduce culm physical strength through decreasing in structural carbohydrates contents in japonica rice. J Integr Agric 15(5):992–1004

    Article  CAS  Google Scholar 

  • Zhang W, Wu L, Ding Y, Yao X, Wu X, Weng F, Li G, Liu Z, Tang S, Ding G, Wang S (2017) Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa). J Plant Res 130(5):859–871

    Article  CAS  PubMed  Google Scholar 

  • Zheng M, Chen J, Shi Y, Li Y, Yin Y, Yang D et al (2017) Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat. Sci Rep 7:41805. https://doi.org/10.1038/srep41805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Shi GX, Li ZS, Kuang TY, Li B, Wei QK, Bai KZ, Hu YX, Lin JX (2004) Anatomical and chemical features of high-yield wheat cultivar with reference to its parents. J Integr Plant Biol 46(5):565–572

    CAS  Google Scholar 

  • Zuber U, Winzeler H, Messmer MM, Keller M, Keller B, Schmid JE, Stamp P (1999) Morphological traits associated with lodging resistance of spring wheat (Triticum aestivum L.). J Agron Crop Sci 182:17–24

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provide by Indian Council of Agricultural Research (Incentivizing Agriculture).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinki Khobra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khobra, R., Sareen, S., Meena, B.K. et al. Exploring the traits for lodging tolerance in wheat genotypes: a review. Physiol Mol Biol Plants 25, 589–600 (2019). https://doi.org/10.1007/s12298-018-0629-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-018-0629-x

Keywords

Navigation