Skip to main content

Advertisement

Log in

Elimination of macro elements from inoculation and co-cultivation media enhances the efficiency of Agrobacterium-mediated transformation in Petunia

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

In order to evaluate the effect of inoculation and co-cultivation media elements on transformation frequency in Petunia hybrida, modified MS media with different elements were tested on Alvan and Large Flower Alvan (LF Alvan), two local cultivars. Leaf explants of both cultivars were inoculated with Agrobacterium tumefaciens strain LBA4404 (pBI121) containing neomycin phosphotransferase (nptII) and an intron-containing β-glucuronidase (gus) genes. When medium lacking KH2PO4, NH4NO3, KNO3, and CaCl2 was used as inoculation and co-cultivation medium, a higher frequency of transformation for Alvan (22%) and LF Alvan (16%) was obtained. Kanamycin resistant plantlets were stained blue by GUS assay. Furthermore, polymerase chain reaction (PCR) analysis revealed the presence of both gus and nptII genes in all putative transformants. Finally, southern blot hybridization confirmed insertion of 1–4 copies of gus gene in transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LF Alvan:

Large Flower Alvan

GUS:

β-glucuronidase

CTAB:

Cetyltrimethylammonium bromide

nptII :

Neomycin phosphotransferase

CaMV:

Cauliflower mosaic virus

References

  • Azadi P, Chin DP, Kuroda K, Khan RS, Mii M (2010a) a) Macro elements in inoculation and co-cultivation medium strongly affect the efficiency of Agrobacterium-mediated transformation in Lilium. Plant Cell Tissue Organ Culture 101:201–209. https://doi.org/10.1007/s11240-010-9677-9

    Article  CAS  Google Scholar 

  • Azadi P, Otang NV, Chin DP, Nakamura I, Fujisawa M, Harada H, Misawa N, Mii M (2010b) b) Metabolic engineering of Lilium × formolongi using multiple genes of the carotenoid biosynthesis pathway. Plant Biotechnol Rep 4:269–280. https://doi.org/10.1007/s11816-010-0147-y

    Article  Google Scholar 

  • Azadi P, Otang NV, Supaporn H, Khan RS, Chin DP, Nakamura I, Mii M (2011) Increased resistance to cucumber mosaic virus (CMV) in Lilium transformed with a defective CMV replicase gene. Biotech Lett 33:1249–1255

    Article  CAS  Google Scholar 

  • Azadi P, Bagheri H, Nalousi AM, Nazari F, Chandler SF (2016) Current status biotechnology advances in genetic engineering of ornamental plants. Biotechnol Adv 34(6):1073–1090

    Article  PubMed  Google Scholar 

  • Chen P, Wang ChK, Soong ShCh (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insersion from transgenic plants. Molecular Breeding. Inst Bioagric Sci 11:287–293

    CAS  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danhorn T, Hentzer M, Givskov M, Parsek MR, Fuqua C (2004) Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR–PhoB regulatory system. J Bacteriol 186:4492–4501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation from small amount of fress tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Drummond RS, Martinezsanchez NM, Janssen BJ, Templeton KR, Simons JL, Quinn BD, Karunairetnam S, Snowden KC (2009) Petunia hybrida carotenoid clieavage dioxygenase7 is involved in the production of negative and positive branching signals in Petunia. Plant Physiol 151:1867–1877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dupre´ P, Lacoux J, Neutelings G, Mattar-Laurain D, Fliniaux MA, David A, Jacquin-Dubreuil A (2000) Genetic transformation of Ginkgo biloba by Agrobacterium tumefaciens. Physiol Plant 108:413–419

    Article  Google Scholar 

  • Durland RH, Toukdarian A, Fang F, Helinski DR (1990) Mutations in the trfA replication gene of the broad-host-range plasmid RK2 result in elevated plasmid copy numbers. J Bacteriol 172(7):3859–3867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flego D, Pirhonen M, Saarilahti H, Palva TK, Palva ET (1997) Control of virulence gene expression by plant calcium in the phytopathogen Erwinia carotovora. Mol Microbiol 25:831–838

    Article  PubMed  CAS  Google Scholar 

  • Fraley RT, Horsch RB, Mtzke MD, Chilton W, Sanders P (1984) In vitro transformation of Petunia cells by an improved method of co-cultivation with A.tumefaciens strains. Plant Mol Biol 3:371–378

    Article  PubMed  CAS  Google Scholar 

  • Grates T, Vandenbussche M (2005) A model system for comparative research: petunia. Trends Plant Sci 10:251–256

    Article  CAS  Google Scholar 

  • Hoshi Y, Kondo M, Mori S, Adachi Y, Nakano M, Kobayashi H (2004) Production of transgenic lily plants by Agrobacterium-mediated transformation. Plant Cell Rep 22:359–364

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO J 6:3901–3907. https://doi.org/10.1073/pnas.1411926112

    Article  PubMed  CAS  Google Scholar 

  • Ke XY, McCormac AC, Harvey A, Lonsdale D, Chen DF, Elliott MC (2002) Manipulation of discriminatory T-DNA delivery by Agrobacterium into cells of immature embryos of barley and wheat. Euphytica 126(3):333–343

    Article  CAS  Google Scholar 

  • Li F, Li Ch, Li M, Yu M, Fand Ch, Wang Sh (2013) Microspores and Agrobacterium-mediated transient expression of β-glucuronidase (GUS) reporter gene. Int J Agric Biol 15:1098–1104

    CAS  Google Scholar 

  • Lutke WK (2006) Petunia (Petunia hybrida). Methods Mol Biol 344:339–349

    PubMed  CAS  Google Scholar 

  • Machado LDOR, De Andrade GM, Barrueto Cid LP, Penchel RM, Brasileiro ACM (1997) Agrobacterium strain specificity and shooty tumour formation in eucalypt (Eucalyptus grandis × E. urophylla). Plant Cell Rep 16:299–303. https://doi.org/10.1007/s002990050227

    Article  CAS  Google Scholar 

  • McCullen CA, Binns AN (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22:101–127

    Article  PubMed  CAS  Google Scholar 

  • Montoro P, Teinseree N, Rattana W, Kongsawadworakul P, Michaux-Ferriere N (2000) Effect of exogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis (rubber tree) friable calli. Plant Cell Rep 19:851–855. https://doi.org/10.1007/s002990000208

    Article  CAS  Google Scholar 

  • Pandian A, Hurlstone C, Liu Q, Singh S, Salisbury P, Green A (2006) Agrobactrium-Mediated transformation protocol to overcome necrosis in elite Australian Brassica Juncea Lines. Plant Mol Bio Rep 24:103a–i

    Article  Google Scholar 

  • Phelep M, Petit A, Martin L, Duhoux E, Tempe J (1991) Transformation and regeneration of a nitrogen-fixing tree, Allocasuarina verticillata Lam. Biotechnology 9:461–466

    CAS  Google Scholar 

  • Romantschuk M (1992) Attachment of plant pathogenic bacteria to plant surfaces. Annu Rev Phytopathol 30:225–243

    Article  PubMed  CAS  Google Scholar 

  • Sharafi A, Hashemi Sohi H, Mousavi A, Azadi P, Razavi K, Ntui VO (2013) A reliable and efficient protocol for inducing hairy roots in Papaver bracteatum. Plant Cell Tissue Organ Culture 113:1–9. https://doi.org/10.1007/s11240-012-0246-2

    Article  CAS  Google Scholar 

  • Sharafi A, Sohi HH, Azadi P, Sharafi AA (2014) Hairy root induction and plant regeneration of medicinal plant Dracocephalum kotschyi. Physiol Mol Biol Plants 20(2):257–262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Subramoni S, Nathoo N, Klimov E, Yuan Z (2014) Agrobacterium tumefaciens response to plant-derived signaling molecules. Front Plant Sci 5:322–333. https://doi.org/10.3389/fpls.2014.00322

    Article  PubMed  PubMed Central  Google Scholar 

  • Thirukumaran G, Ntuni VO, Khan RS, Mii M (2009) Thidiazuron: an efficient plant growth regulator for enhancing Agrobacterium-mediated transformation in Petunia hybrida. Plant Cell Tissue Organ Culture 99:109–115. https://doi.org/10.1007/s11240-009-9581-3

    Article  CAS  Google Scholar 

  • Tzfira T, Yarnitzky O, Vainstein A, Altman A (1996) Agrobacterium rhizogenes-mediated DNA transfer in Pinus halepensis. Plant Cell Rep 16:26–31

    Article  PubMed  CAS  Google Scholar 

  • Valizadeh Kaji B, Ershadi A, Tohidfar M (2013) Agrobacterium-Mediated Transformation of Pomegranate (Punica granatum L.) ‘Yousef Khani’ Using the gus Reporter Gene. Int J Hortic Sci Technol 1:31–41

    Google Scholar 

  • Van der Meer IM (1999) Agrobacterium-mediated transformation of Petunia leaf disks. Plant Cell Culture Protoc 111:327–334

    Article  Google Scholar 

  • Winans SC (1990) Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. J Bacteriol 172:2433–2438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wylie SJ, Tjokrokusumo D, MCCOMB JA (2003) Transformation of Petunia hybrida by the Agrobacterium suspension drop method. Mol Methods Plant, Analysis Vol, p 23

    Google Scholar 

  • Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107(7):1157–1168. https://doi.org/10.1007/s00122-003-1368-z

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledegments

This work was supported by Bu-ali Sina University, Hamedan, Iran, and Novin Giti Gene Biotech. Co. Biotechnology Incubator Center of National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedayat Bagheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nobakht Vakili, A., Bagheri, H. & Azadi, P. Elimination of macro elements from inoculation and co-cultivation media enhances the efficiency of Agrobacterium-mediated transformation in Petunia. Physiol Mol Biol Plants 24, 703–710 (2018). https://doi.org/10.1007/s12298-018-0553-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-018-0553-0

Keywords