Abstract
In order to evaluate the effect of inoculation and co-cultivation media elements on transformation frequency in Petunia hybrida, modified MS media with different elements were tested on Alvan and Large Flower Alvan (LF Alvan), two local cultivars. Leaf explants of both cultivars were inoculated with Agrobacterium tumefaciens strain LBA4404 (pBI121) containing neomycin phosphotransferase (nptII) and an intron-containing β-glucuronidase (gus) genes. When medium lacking KH2PO4, NH4NO3, KNO3, and CaCl2 was used as inoculation and co-cultivation medium, a higher frequency of transformation for Alvan (22%) and LF Alvan (16%) was obtained. Kanamycin resistant plantlets were stained blue by GUS assay. Furthermore, polymerase chain reaction (PCR) analysis revealed the presence of both gus and nptII genes in all putative transformants. Finally, southern blot hybridization confirmed insertion of 1–4 copies of gus gene in transgenic plants.




Similar content being viewed by others
Abbreviations
- LF Alvan:
-
Large Flower Alvan
- GUS:
-
β-glucuronidase
- CTAB:
-
Cetyltrimethylammonium bromide
- nptII :
-
Neomycin phosphotransferase
- CaMV:
-
Cauliflower mosaic virus
References
Azadi P, Chin DP, Kuroda K, Khan RS, Mii M (2010a) a) Macro elements in inoculation and co-cultivation medium strongly affect the efficiency of Agrobacterium-mediated transformation in Lilium. Plant Cell Tissue Organ Culture 101:201–209. https://doi.org/10.1007/s11240-010-9677-9
Azadi P, Otang NV, Chin DP, Nakamura I, Fujisawa M, Harada H, Misawa N, Mii M (2010b) b) Metabolic engineering of Lilium × formolongi using multiple genes of the carotenoid biosynthesis pathway. Plant Biotechnol Rep 4:269–280. https://doi.org/10.1007/s11816-010-0147-y
Azadi P, Otang NV, Supaporn H, Khan RS, Chin DP, Nakamura I, Mii M (2011) Increased resistance to cucumber mosaic virus (CMV) in Lilium transformed with a defective CMV replicase gene. Biotech Lett 33:1249–1255
Azadi P, Bagheri H, Nalousi AM, Nazari F, Chandler SF (2016) Current status biotechnology advances in genetic engineering of ornamental plants. Biotechnol Adv 34(6):1073–1090
Chen P, Wang ChK, Soong ShCh (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insersion from transgenic plants. Molecular Breeding. Inst Bioagric Sci 11:287–293
Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980
Danhorn T, Hentzer M, Givskov M, Parsek MR, Fuqua C (2004) Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR–PhoB regulatory system. J Bacteriol 186:4492–4501
Doyle JJ, Doyle JL (1987) A rapid DNA isolation from small amount of fress tissue. Phytochem Bull 19:11–15
Drummond RS, Martinezsanchez NM, Janssen BJ, Templeton KR, Simons JL, Quinn BD, Karunairetnam S, Snowden KC (2009) Petunia hybrida carotenoid clieavage dioxygenase7 is involved in the production of negative and positive branching signals in Petunia. Plant Physiol 151:1867–1877
Dupre´ P, Lacoux J, Neutelings G, Mattar-Laurain D, Fliniaux MA, David A, Jacquin-Dubreuil A (2000) Genetic transformation of Ginkgo biloba by Agrobacterium tumefaciens. Physiol Plant 108:413–419
Durland RH, Toukdarian A, Fang F, Helinski DR (1990) Mutations in the trfA replication gene of the broad-host-range plasmid RK2 result in elevated plasmid copy numbers. J Bacteriol 172(7):3859–3867
Flego D, Pirhonen M, Saarilahti H, Palva TK, Palva ET (1997) Control of virulence gene expression by plant calcium in the phytopathogen Erwinia carotovora. Mol Microbiol 25:831–838
Fraley RT, Horsch RB, Mtzke MD, Chilton W, Sanders P (1984) In vitro transformation of Petunia cells by an improved method of co-cultivation with A.tumefaciens strains. Plant Mol Biol 3:371–378
Grates T, Vandenbussche M (2005) A model system for comparative research: petunia. Trends Plant Sci 10:251–256
Hoshi Y, Kondo M, Mori S, Adachi Y, Nakano M, Kobayashi H (2004) Production of transgenic lily plants by Agrobacterium-mediated transformation. Plant Cell Rep 22:359–364
Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO J 6:3901–3907. https://doi.org/10.1073/pnas.1411926112
Ke XY, McCormac AC, Harvey A, Lonsdale D, Chen DF, Elliott MC (2002) Manipulation of discriminatory T-DNA delivery by Agrobacterium into cells of immature embryos of barley and wheat. Euphytica 126(3):333–343
Li F, Li Ch, Li M, Yu M, Fand Ch, Wang Sh (2013) Microspores and Agrobacterium-mediated transient expression of β-glucuronidase (GUS) reporter gene. Int J Agric Biol 15:1098–1104
Lutke WK (2006) Petunia (Petunia hybrida). Methods Mol Biol 344:339–349
Machado LDOR, De Andrade GM, Barrueto Cid LP, Penchel RM, Brasileiro ACM (1997) Agrobacterium strain specificity and shooty tumour formation in eucalypt (Eucalyptus grandis × E. urophylla). Plant Cell Rep 16:299–303. https://doi.org/10.1007/s002990050227
McCullen CA, Binns AN (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22:101–127
Montoro P, Teinseree N, Rattana W, Kongsawadworakul P, Michaux-Ferriere N (2000) Effect of exogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis (rubber tree) friable calli. Plant Cell Rep 19:851–855. https://doi.org/10.1007/s002990000208
Pandian A, Hurlstone C, Liu Q, Singh S, Salisbury P, Green A (2006) Agrobactrium-Mediated transformation protocol to overcome necrosis in elite Australian Brassica Juncea Lines. Plant Mol Bio Rep 24:103a–i
Phelep M, Petit A, Martin L, Duhoux E, Tempe J (1991) Transformation and regeneration of a nitrogen-fixing tree, Allocasuarina verticillata Lam. Biotechnology 9:461–466
Romantschuk M (1992) Attachment of plant pathogenic bacteria to plant surfaces. Annu Rev Phytopathol 30:225–243
Sharafi A, Hashemi Sohi H, Mousavi A, Azadi P, Razavi K, Ntui VO (2013) A reliable and efficient protocol for inducing hairy roots in Papaver bracteatum. Plant Cell Tissue Organ Culture 113:1–9. https://doi.org/10.1007/s11240-012-0246-2
Sharafi A, Sohi HH, Azadi P, Sharafi AA (2014) Hairy root induction and plant regeneration of medicinal plant Dracocephalum kotschyi. Physiol Mol Biol Plants 20(2):257–262
Subramoni S, Nathoo N, Klimov E, Yuan Z (2014) Agrobacterium tumefaciens response to plant-derived signaling molecules. Front Plant Sci 5:322–333. https://doi.org/10.3389/fpls.2014.00322
Thirukumaran G, Ntuni VO, Khan RS, Mii M (2009) Thidiazuron: an efficient plant growth regulator for enhancing Agrobacterium-mediated transformation in Petunia hybrida. Plant Cell Tissue Organ Culture 99:109–115. https://doi.org/10.1007/s11240-009-9581-3
Tzfira T, Yarnitzky O, Vainstein A, Altman A (1996) Agrobacterium rhizogenes-mediated DNA transfer in Pinus halepensis. Plant Cell Rep 16:26–31
Valizadeh Kaji B, Ershadi A, Tohidfar M (2013) Agrobacterium-Mediated Transformation of Pomegranate (Punica granatum L.) ‘Yousef Khani’ Using the gus Reporter Gene. Int J Hortic Sci Technol 1:31–41
Van der Meer IM (1999) Agrobacterium-mediated transformation of Petunia leaf disks. Plant Cell Culture Protoc 111:327–334
Winans SC (1990) Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. J Bacteriol 172:2433–2438
Wylie SJ, Tjokrokusumo D, MCCOMB JA (2003) Transformation of Petunia hybrida by the Agrobacterium suspension drop method. Mol Methods Plant, Analysis Vol, p 23
Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107(7):1157–1168. https://doi.org/10.1007/s00122-003-1368-z
Acknowledegments
This work was supported by Bu-ali Sina University, Hamedan, Iran, and Novin Giti Gene Biotech. Co. Biotechnology Incubator Center of National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nobakht Vakili, A., Bagheri, H. & Azadi, P. Elimination of macro elements from inoculation and co-cultivation media enhances the efficiency of Agrobacterium-mediated transformation in Petunia. Physiol Mol Biol Plants 24, 703–710 (2018). https://doi.org/10.1007/s12298-018-0553-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12298-018-0553-0


